Процессы размножения и гибели. Процесс гибели и размножения Процессы гибели и размножения

В данной теоретико-практической работе будет рассмотрена схема непрерывных марковских цепей – так называемая «схема гибели и размножения»

Данная тема крайне актуальна ввиду высокой значимости марковских процессов в исследовании экономических, экологических и биологических процессов, кроме того, марковские процессы лежат в основе теории массового обслуживания, которая в настоящее время активно используется в различных экономических направлениях, в том числе управлении процессами на предприятии.

Марковские процессы гибели и размножения находят широкое применение в объяснении различных процессов происходящих в биосфере, экосистеме и т.д. Надо отметить, что данный тип марковских процессов получил свое название именно вследствие широкого применения в биологии, в частности моделируя гибель и размножение особей различных популяций.

В данной работе будут использованы процессы гибели и размножения при решении задачи, целью которой является нахождение приблизительного количества пчел в отдельно взятой популяции.

Теоретическая часть

В рамках теоретической части будут написаны алгебраические уравнения для предельных вероятностей состояний. Очевидно, что если две непрерывные цепи Маркова имеют одинаковые графы состояний и различаются только значениями интенсивностей ,

то можно сразу найти предельные вероятности состояний для каждого из графов в отдельности, достаточно составить и решить в буквенном виде уравнения для одного из них, а затем подставить вместо соответствующие значения. Для многих часто встречающихся форм графов линейные уравнения легко решаются в буквенном виде.

В данной работе будет описана схема непрерывных марковских цепей - так называемая «схема гибели и размножения».

Марковская непрерывная цепь называется «процессом гибели и размножения», если ее граф состояний имеет вид, представленный на рис. 1.1, т. е. все состояния можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 2 , ..., S n-1) связано прямой и обратной связью с каждым из соседних состояний, а крайние состояния (S 1 , S n) - только с одним соседним состоянием.

Для записи алгебраических уравнений для предельных вероятностей состояний возьмем некую задачу.

Пример. Техническое устройство состоит из трех одинаковых узлов; каждый из них может выходить из строя (отказывать); отказавший узел немедленно начинает восстанавливаться. Состояния системы нумеруем по числу неисправных узлов:

S 0 - все три узла исправны;

S 1 - один узел отказал (восстанавливается), два исправны;

S 2 - Два узла восстанавливаются, один исправен;

S 3 - все три узла восстанавливаются.

Граф состояний показан на рис. 1.2. Из графа видно, что процесс, протекающий в системе, представляет собой процесс «гибели и размножения».

Схема гибели и размножения очень часто встречается в самых разнообразных практических задачах; поэтому имеет смысл заранее рассмотреть эту схему в общем виде и решить соответствующую систему алгебраических уравнений с тем, чтобы в дальнейшем, встречаясь с конкретными процессами, протекающими по такой схеме, не решать задачу каждый раз заново, а пользоваться уже готовым решением.

Итак, рассмотрим случайный процесс гибели и размножения с графом состояний, представленным на рис. 1.3

Напишем алгебраические уравнения для вероятностей состояний. Для первого состояния S 1 имеем:

Для второго состояния S 2 суммы членов, соответствующих входящим и выходящим стрелкам, равны:

Но, в силу (1.2), можно сократить справа и слева равные друг другу члены и получим:

Одним словом, для схемы гибели и размножения члены, соответствующие стоящим друг над другом стрелкам, равны между собой:

где k принимает все значения от 2 до n.

Итак, предельные вероятности состояний р ъ р 2 > ..., р п в любой схеме гибели и размножения удовлетворяют уравнениям:

(1.4)

и нормировочному условию:

(1.5)

Решим эту систему следующим образом: из первого уравнения (1.4) выразим р 2:

из второго, с учетом (1.6), получим

(1.7)

из третьего, с учетом (1.7):

(1.8)

Эта формула справедлива для любого k от 2 до п.

Обратим внимание на ее структуру. В числителе стоит произведение всех плотностей вероятности перехода (интенсивностей) стоящих у стрелок, направленных слева направо, с начала и вплоть до той, которая идет в состояние S k ; в знаменателе - произведение всех интенсивностей , стоящих у стрелок, идущих справа налево, опять-таки, с начала и вплоть до стрелки, исходящей из состояния S k . При k=n в числителе будет стоять произведение интенсивностей , стоящих у всех стрелок, идущих слева направо, а в знаменателе - у всех стрелок, идущих справа налево.

Итак, все вероятности выражены через одну из них: . Подставим эти выражения в нормировочное условие: . Получим:

Остальные вероятности выражаются через

(1.10)

Таким образом, задача «гибели и размножения» решена в общем виде: найдены предельные вероятности состояний.

Практическая часть

Процессы Маркова, в частности гибели и размножения, используют для описания работы и анализа широкого класса систем с конечным числом состояний, в которых происходят неоднократные переходы из одного состояния в другое под воздействием каких-либо причин. В таких системах они происходят случайным образом, скачкообразно в произвольный момент времени, когда наступают некоторые события (потоки событий). Как правило, они бывают двух типов: одно из них условно называют рождением объекта, а второе - его гибелью.

Естественное размножение пчелиных семей - роение - с точки зрения протекающих в системе в текущий момент времени процессов можно рассматривать как вероятностный процесс, когда семья в определенный момент времени может перейти из рабочего состояния в роевое. В зависимости от различных факторов, как контролируемых технологических, так и слабоконтролируемых биологических и климатических, оно может закончиться роением или возвратом семьи в рабочее состояние. При этом семья может неоднократно переходить то в одно, то в другое состояние. Таким образом, для описания математической модели процесса роения допустимо применять теорию однородных процессов Маркова.

Интенсивность перехода пчелиной семьи в роевое состояние - размножение - в значительной мере определяется темпами накопления молодых бездеятельных пчел. Интенсивность обратного перехода - «гибели» - возвращением семьи в рабочее состояние, которая, в свою очередь, зависит собственно от роения, отбора расплода и пчел (формирование отводков), количества собираемого нектара и т.д.

Вероятность перехода пчелиной семьи в роевое состояние в первую очередь будет определяться интенсивностью проходящих в ней процессов, приводящих к роению λ, и противороевых приемов μ, которые зависят от технологий, используемых для снижения ройливости семей. Следовательно, чтобы влиять на обсуждаемые процессы, необходимо изменить интенсивность и направленность потоков λ и μ (рис. 1).

Моделирование отбора из семьи части пчел (увеличения их «гибели») показало, что вероятность возникновения рабочего состояния логарифмически возрастает, а вероятность роения логарифмически сокращается. При противороевом приеме - отборе из семьи 5–7 тыс. пчел (две-три стандартные рамки) - вероятность роения составит 0,05, а вероятность рабочего состояния - 0,8; отбор более трех рамок с пчелами снижает вероятность роения на очень малую величину.

Решим практическую задачу, касающуюся процесса роения у пчел.

Для начала построим граф, похожий на граф на рис 1, с интенсивностями перехода в то или иное состояние.

Заключение

Подведем итог.

В данной работе была приведена теоретическая справка, а также практическое применение марковским процессам гибели и размножения на примере пчелиной популяции, также была решена практическая задача с использованием марковского процесса гибели и размножения.

Было показано, что марковские процессы имеют прямое отношение ко многим процессам, происходящим в окружающей среде и в экономике. Также марковские процессы лежат в основе теории массового обслуживания, которая в свою очередь является незаменимой в экономике, в частности при управлении предприятием и различными процессами, происходящими в нем.

Собственные мысли

На мой взгляд марковские процессы гибели и размножения безусловно полезны в различных сферах деятельности человека, но у них есть ряд недостатков, в частности система из любого своего состояния непосредственно может перейти только в соседнее с нею состояние. Данный процесс не отличается особой сложностью и сфера его применения немного узко-специализирована, но, тем не менее, данный процесс может использоваться в сложных моделях в качестве одного из компонента новой модели, например при моделировании документооборота в компании, задействовании станков в цеху и так далее.

Список литературы

1) Е.С. Вентцель «Исследование операций» Москва, «Советское радио» 1972

2) Л.Г.Лабскер «Вероятностное моделирование в финансово-экономической области» Москва «Альпина Паблишер» 2002

3) И.Н.Мишин Статья: «Роение в процессах маркова» 2006

4) В.Н.Тутубалин, Ю.М.Барабашева «Процессы размножения и гибели в экологических моделях» 2006

5. Процессы размножения и гибели.

Процессы размножения и гибели являются частным случаем марковских случайных процессов, которые тем не менее находят весьма широкое применение при исследовании дискретных систем со стохастическим характером функционирования. Процесс размножения и гибели представляет собой марковский случайный процесс, в котором переходы из состояния E i допустимы только в соседние состояния E i- 1 , E i и E i+1 . Процесс размножения и гибели является адекватной моделью для описания изменений, происходящих в объеме биологических популяций. Следуя этой модели, говорят, что процесс находится в состоянии E i , если объем популяции равен i членам. При это переход из состояния E i в состояние E i +1 соответствует рождению, а переход из E i в E i-1 - гибели, предполагая, что объем популяции может изменяться не более чем на единицу; это означает, что для процессов размножения и гибели не допускаются многократные одновременные рождения и/или гибели.

Дискретные процессы размножения и гибели менее интересны, чем непрерывные, поэтому в дальнейшем они подробно не рассматриваются и основное внимание уделяется непрерывным процессам. Однако следует отметить, что для дискретных процессов проходят почти параллельные выкладки. Переход процесса размножения и гибели из состояния E i обратно в состояние E i представляет непосредственный интерес только для дискретных цепей Маркова; в непрерывном случае интенсивность, с которой процесс возвращается в текущее состояние, равна бесконечности, и эта бесконечность была исключена согласно определению (13).

В случае процесса размножения и гибели с дискретным временем вероятности переходов между состояниями

Здесь d i - вероятность того, что на следующем шаге (в терминах биологической популяции) произойдет одна гибель, уменьшающая объем популяции до i -1 при условии, что на данном шаге объем популяции равен i . Аналогично, b i - вероятность рождения на следующем шаге, приводящего к увеличению объема популяции до i +1; 1-d i -b i представляет собой вероятность того, что ни одно из этих событий не произойдет и на следующем шаге объем популяции не изменится. Допускаются только эти три возможности. Ясно, что d 0 =0, так как гибель не может наступить, если некому погибать.

Однако в противовес интуиции допускается, что b 0 >0, что соответствует возможности рождения, когда в популяции нет ни одного члена. Хотя это можно расценивать как спонтанное рождение или божественное творение, но в теории дискретных систем такая модель представляет собой вполне осмысленное допущение. А именно, модель такова: популяция представляет собой поток требований, находящихся в системе, гибель означает уход требования из системы, а рождение соответствует поступлению в систему нового требования. Ясно, что в такой модели вполне возможно поступление нового требования (рождение) в свободную систему. Матрица вероятностей переходов для общего процесса размножения и гибели имеет следующий вид:

Если цепь Маркова является конечной, то последняя строка матрицы записывается в виде ; это соответствует тому, что не допускаются никакие размножения после того, как популяция достигает максимального объема n .

Матрица T содержит нулевые члены только на главной и двух ближайших к ней диагоналях. Из-за такого частного вида матрицы T естественно ожидать, что анализ процесса размножения и гибели не должен вызывать трудностей.

Далее будем рассматривать только непрерывные процессы размножения и гибели, в которых переходы из состояния E i возможны только в соседние состояния E i-1 (гибель) и E i+1 (рождение). Обозначим через l i интенсивность размножения; она описывает скорость, с которой происходит размножение в популяции объема i . Аналогично, через m i обозначим интенсивность гибели, задающую скорость с которой происходит гибель в популяции объема i . Заметим, что введенные интенсивности размножения и гибели не зависят от времени, а зависят только от состояния E i , следовательно, получаем непрерывную однородную цепь Маркова типа размножения и гибели. Эти специальные обозначения введены потому, что они непосредственно приводят к обозначениям, принятым в теории дискретных систем. В зависимости от ранее введенных обозначений имеем:

l i = q i , i +1 и m i = q i , i -1 .

Требование о допустимости переходов только в ближайшие соседние состояния означает, что исходя из (14), q ii =-(m i + l i ). Таким образом, матрица интенсивностей переходов общего однородного процесса размножения и гибели принимает вид

Заметим, что за исключением главной и соседних с ней снизу и сверху диагоналей все элементы матрицы равны нулю. Соответствующий граф интенсивностей переходов представлен на рис. 4.

Более точное определение непрерывного процесса размножения и гибели состоит в следующем: некоторый процесс представляет собой процесс размножения и гибели, если он является однородной цепью Маркова с множеством состояний {E 0 , E 1 , E 2 , …}, если рождение и гибель являются независимыми событиями (это вытекает непосредственно из марковского свойства) и если выполняют следующие условия:

1) Pr [точно 1 рождение в промежутке времени (t ,t + Δt )| объем популяции равен i ]= ;

2) Pr [точно 1 гибель в промежутке времени (t ,t + Δt )| объем популяции равен i ]= ;

3) Pr [точно 0 рождений в промежутке времени (t ,t + Δt )| объем популяции равен i ]= ;

4) Pr [точно 0 гибелей в промежутке времени (t ,t + Δt )| объем популяции равен i ]= .

Согласно этим предположениям кратные рождения, кратные гибели и одновременные рождения и гибели в течение малого промежутка времени (t , t + Δt ) запрещены в том смысле, что вероятность таких кратких событий имеет порядок о t ).

Вероятность того, что непрерывный процесс размножения и гибели в момент времени t находится в состоянии E i (объем популяции равен i ) определяется напрямую из (16) в виде

Для решения полученной системы дифференциальных уравнений в нестационарном случае, когда вероятности P i (t ), i =0,1,2,…, зависят от времени, необходимо задать распределение начальных вероятностей P i (0), i =0,1,2,…, при t =0. Кроме того, должно удовлетворяться нормировочное условие.

Рис.4. Граф интенсивностей переходов для процесса размножения и гибели.

Рассмотрим теперь простейший процесс чистого размножения, который определяется как процесс, для которого m i = 0 при всех i . Кроме того, для еще большего упрощения задачи предположим, что l i =l для всех i =0,1,2,... . Подставляя эти значения в уравнения (18) получим

Для простоты предположим также, что процесс начинается в нулевой момент при нуле членов, то есть:

Отсюда для P 0 (t ) получаем решение

P 0 (t )=e - l t .

Подставляя это решение в уравнение (19) при i = 1, приходим к уравнению

.

Решение этого дифференциального уравнения, очевидно, имеет вид

P 1 (t )= l te - l t .

.

Это знакомое нам распределение Пуассона. Таким образом, процесс чистого размножения с постоянной интенсивностью l приводит к последовательности рождений, образующей пуассоновский процесс.

Наибольший интерес в практическом плане представляют вероятности состояний процесса размножения и гибели в установившемся режиме. Предполагая, что процесс обладает эргодическим свойством, т.е. существуют пределы перейдем к определению предельных вероятностей P i .

Уравнения для определения вероятностей стационарного режима можно получить непосредственно из (18), учитывая, что dP i (t )/dt = 0 при :

Полученная система уравнений решается с учетом нормировочного условия

Систему уравнений (21) для установившегося режима процесса размножения и гибели можно составить непосредственно по графу интенсивностей переходов на рис.4, применяя принцип равенства потоков вероятностей к отдельным состоянием процесса. Например, если рассмотреть состояние E i в установившемся режиме, то:

интенсивность потока вероятностей в и

интенсивность потока вероятностей из .

В состоянии равновесия эти два потока должны быть равны, и поэтому непосредственно получаем

Но это как раз и есть первое равенство в системе (21). Аналогично можно получить и второе равенство системы. Те же самые рассуждения о сохранении потока, которые были приведены ранее, могут быть применены к потоку вероятностей через любую замкнутую границу. Например, вместо того, чтобы выделять каждое состояние и составлять для него уравнение, можно выбрать последовательность контуров, первый из которых охватывает состояние E 0 , второй - состояние E 0 и E 1 , и т.д., включая каждый раз в новую границу очередное состояние. Тогда для i -го контура (окружающего состояния E 0 , E 1 , ..., E i -1 ) условие сохранения потока вероятностей можно записать в следующем простом виде:

.

Полученная система уравнений эквивалентна выведенной ранее. Для составления последней системы уравнений нужно провести вертикальную линию, разделяющую соседние состояния, и приравнять потоки через образовавшуюся границу.

Решение системы (23) можно найти методом математической индукции.

При i =1 имеем:

при i =2:

при i =3:

и т.д.

Вид полученных равенств показывает, что общее решение системы уравнений (23) имеет вид

или, учитывая, что, по определению, произведение по пустому множеству равно единице

Таким образом, все вероятности P i для установившегося режима выражаются через единственную неизвестную константу P 0 . Равенство (22) дает дополнительное условие, позволяющее определить P 0 . Тогда, суммируя по всем i , для P 0 получим:

Обратимся к вопросу о существовании стационарных вероятностей P i . Для того, чтобы полученные выражения задавали вероятности, обычно накладывается требование, чтобы P 0 > 0. Это, очевидно, налагает ограничение на коэффициенты размножения и гибели в соответствующих уравнениях. По существу требуется, чтобы система иногда опустошалась; это условие стабильности представляется весьма резонным, если обратиться к примерам реальной жизни. Определим следующие две суммы:

Все состояния E i рассматриваемого процесса размножения и гибели будут эргодическими тогда и только тогда, когда S 1 < и S 2 = . Только эргодический случай приводит к установившимся вероятностям P i , i = 0, 1, 2, …, и именно этот случай представляет интерес. Заметим, что условия эргодичности выполняются только тогда, когда, начиная с некоторого i , все члены последовательности {} ограничены единицей, т.е. тогда, когда существует некоторое i 0 (и некоторое С <1) такое, что для всех ii 0 выполняется неравенство:

В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов – так называемый процесс гибели и размножения. Название этого процесса связано с рядом биологических задач, где он является математической моделью изменения численности биологических популяций.

Граф состояний процесса гибели и размножения имеет вид, показанный на рис. 15.4.

Рис. 15.4

Рассмотрим упорядоченное множество состояний системыПереходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояниявозможны переходы только либо в состояние, либо в состояние .

Предположим, что все потоки событий, переводящие систему по стрелкам графа, простейшие с соответствующими интенсивностямиили

По графу, представленному на рис. 15.4, составим и решим алгебраические уравнения для предельных вероятностей состояний (их существование вытекает из возможности перехода из каждого состояния в каждое другое и конечности числа состояний).

В соответствии с правилом составления таких уравнений (см. 15.10) получим: для состояния S 0

для состояния S,

Которое с учетом (15.12) приводится к виду

Аналогично, записывая уравнения для предельных вероятностей других состояний, можно получить следующую систему уравнений:

(15.14)

к которой добавляется нормировочное условие

Решая систему (15.14), (15.15), можно получить

(15.16)

Легко заметить, что в формулах (15.17) для коэффициенты при есть слагаемые, стоящие после единицы в формуле (15.16). Числители этих коэффициентов представляют произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо до данного состояния , а знаменатели – произведение всех интенсивностей,стоящих у стрелок, ведущих справа налево из состояниядо.

15.4. Процесс гибели и размножения представлен графом (рис. 15.5). Найти предельные вероятности состояний.

Рис. 15.5

Решение. По формуле (15.16) найдем

по (15.17) т.е. в установившемся, стационарном режиме в среднем 70,6% времени система будет находиться в состоянии 5(), 17,6% – в состоянии 5, и 11,8% – в состоянии S2.

СМО с отказами

В качестве показателей эффективности СМО с отказами будем рассматривать:

А абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;

Q – относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;

Р тк – вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

k – среднее число запятых каналов (для многоканальной системы).

Одноканальная система с отказами. Рассмотрим задачу.

Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система 5 (СМО) имеет два состояния: 50 – канал свободен, 5, – канал занят. Размеченный граф состояний представлен на рис. 15.6.

При установлении в СМО предельного, стационарного режима процесса система алгебраических уравнений для вероятностей состояний имеет вид (см. правило составления таких уравнений на с. 370):

т.е. система вырождается в одно уравнение. Учитывая нормировочное условие р 0х = 1, найдем из (15.18) предельные вероятности состояний

(15.19)

которые выражают среднее относительное время пребывания системы в состоянии 50 (когда канал свободен) и 5, (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа:

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока заявок

15.5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефонумин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем λ = 90 (1 /ч),мин. Интенсивность потока обслуживании μ = 1/ίο6 = 1/2 = 0,5 (1/мин) = = 30 (1/ч). По (15.20) относительная пропускная способность СМО Q = 30/(90 + 30) = 0,25, т.е. в среднем только 25% поступающих заявок составят переговоры по телефону. Соответственно, вероятность отказа в обслуживании составит Р тк = 0,75 (см. (15.21)). Абсолютная пропускная способность СМО но (15.22) А = 90 ∙ 0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система с отказами. Рассмотрим классическую задачу Эрланга.

Имеется п каналов, на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе):

где– состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 15.7.

Рис. 15.7

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S., (два канала заняты), то она может перейти в состояние 5, (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния 53 (три канала заняты) в 52, будет иметь интенсивность 3μ, т.е. может освободиться любой из трех каналов и т.д.

В формуле (15.16) для схемы гибели и размножения получим для предельной вероятности состояния

(15.23)

где члены разложениябудут представлять собой коэффициенты при р а в вы́ражениях для предельных вероятностейВеличина

называется приведенной интенсивностью потока заявок, или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Теперь

(15.25)

Формулы (15.25) и (15.26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все п каналов системы будут заняты, т.е.

Относительная пропускная способность – вероятность того, что заявка будет обслужена:

(15.28)

Абсолютная пропускная способность:

(15.29)

Среднее число (математическое ожидание числа) занятых каналов:

где/;, – предельные вероятности состояний, определяемых но формулам (15.25), (15.26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы А есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов

или, учитывая (15.29), (15.24):

15.6. В условиях задачи 15.5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок нс менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (15.24) р = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора 7об = 2 мин поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) п = 2, 3, 4, ... и определим по формулам (15.25–15.29) для получаемой и-канальной СМО характеристики обслуживания. Например, при п = 2 р 0 = = (1 + 3 + 32/2!)“" =0,118 ≈ 0,12; Q = 1 – (з2/2l) – 0,118 = 0,47. А = 90 ∙ 0,47 = 42,3 и т.д. Значения характеристик СМО сведем в табл. 15.1.

Таблица 15.1

По условию оптимальности Q > 0,9, следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q = 0,90 – см. табл. 15.1). При этом в час будут обслуживаться в среднем 80 заявок = 80,1), а среднее число занятых телефонных номеров (каналов) по формуле (15.30) к = 80,1/30 = 2,67.

15.7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию п = 3, λ = 0,25 (1 /ч),^ = 3 (ч). Интенсивность потока обслуживаний μ=1/ίο6 =1/3 = = 0,33. Интенсивность нагрузки ЭВМ по формуле (15.24) р = 0,25/0,33 = 0,75. Найдем предельные вероятности состояний:

по формуле (15.25) р0 = (1 + 0,75 + 0,752/2!+ 0,753/3!) = 0,476;

по формуле (15.26) р, =0,75 0,476 = 0,357; р 2 = (θ,752/2ΐ)χ хО,476 = 0,134; р 3 = (θ,753/3ΐ) 0,476 = 0,033, т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% – имеется одна заявка (занята одна ЭВМ), 13,4% – две заявки (две ЭВМ), 3,3% – три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, Ртк = р 3 = 0,033.

По формуле (15.28) относительная пропускная способность центра <2= 1 – 0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (15.29) абсолютная пропускная способность центра А = 0,25-0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.

По формуле (15.30) среднее число занятых ЭВМ к = = 0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 = 24,2%.

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны – значительный простой каналов обслуживания) и выбрать компромиссное решение.

Рассмотрим еще одну типичную схему непрерывных марковских цепей - так называемую схему гибели и размножения, часто встречающуюся в разнообразных практических задачах.

Марковский процесс с дискретными состояниями S 0 , S 1 , ..., S n называется процессомгибели и размножения , если все состояния можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1 , S 2 , ...,
S n -1
) может переходить только в соседние состояния, которые, в свою очередь, переходят обратно, а крайние состояния (S 0 и S n ) переходят только в соседние состояния (рис. 3.7).

Название взято из биологических задач, где состояние популяции S k означает наличие в ней k единиц особей.

Переход вправо связан с размножением единиц, а влево - с их гибелью.

Рис. 3.7. Граф состояний для процесса гибели и размножения

l 0 (t), l 1 (t), l 2 (t), …, l n (t) - интенсивности размножения;

m 1 (t), m 2 (t), …, m n (t) - интенсивности гибели.

У l и μ индекс того состояния, из которою стрелка выходит.

С состоянием S k связана неслучайная величина Х k : если система S в момент времени t находится в состоянии S k , то дискретная случайная величина X(t) , связанная с функционированием системы, принимает значение k . Таким образом, получаем случайный процесс Х(t), который в случайные, заранее неизвестные моменты времени скачком изменяет свое состояние.

Марковским процессом гибели и размножения с непрерывным временем называется такой случайный процесс, который может принимать только целые неотрицательные значения. Изменения этого процесса могут происходить в любой момент времени, т. е. в любой момент времени он может либо увеличиться на единицу, либо уменьшиться на единицу, либо остаться неизменным.

В практике встречаются процессы чистого размножения и чистой гибели. Процессом чистого размножения называется такой процесс гибели и размножения, у которого интенсивности всех потоков гибели равны нулю; аналогично процессом чистой «гибели» называется такой процесс гибели и размножения, у которого интенсивности всех потоков размножения равны нулю.

Пример 1. Рассмотрим эксплуатацию моделей автомобилей одной марки в крупной транспортной фирме (на предприятии). Интенсивность поступления автомобилей на предприятие равна l(t) . Каждый поступивший на предприятие автомобиль списывается через случайное время T c . Срок службы автомобиля t распределен по показательному закону с параметром m . Процесс эксплуатации автомобилей является случайным процессом. A(t) - число автомобилей данной марки, находящихся в эксплуатации в момент t . Найдем одномерный закон распределения случайного процесса P i (t) = P{A(t) = i}, если: 1) нет ограничений на число эксплуатируемых машин, 2) на предприятии может эксплуатироваться не более n автомобилей.


Решение.

1. Случайный процесс эксплуатации автомобилей есть процесс гибели и размножения, размеченный граф которого представлен на рис. 3.8.

Рис. 3.8. Граф состояний

Система уравнений Колмогорова, соответствующая этому графу, имеет вид

где i = 1, 2, …

Если в начальный момент времени t = 0 на предприятии не было ни одного автомобиля, то решать эту систему уравнений нужно при начальных условиях P 0 (0) = 1, P i (0) = 0 (i = 1, 2, …). Если при t = 0 на предприятии было k автомобилей (k = 1, 2, ...), то начальные условия будут иметь вид

P k (0) = 1, P i (0) = 0 (i = 1, 2, …, i ¹ k ).

2. Если на предприятии может эксплуатироваться не более nавтомобилей моделей одной марки, то имеет место процесс гибели и размножения с ограниченным числом состояний, размеченный граф которого представлен на рис. 3.9.

Рис. 3.9. Граф состояний

Система уравнений Колмогорова для размеченного графа (рис. 3.9) имеет вид (3.4).

Эту систему надо решать при начальных условиях, рассмотренных выше. Решения систем уравнений (3.4) и (3.5) являются одномерными законами распределения Р i (t). Отыскание решений систем в общем виде при произвольном виде функции l(t) представляет значительные трудности и не имеет практических приложении.

При постоянных интенсивностях потоков гибели и размножения и конечном числе состояний будет существовать стационарный режим. Система S с конечным числом состояний (n + 1), в которой протекает процесс гибели и размножения с постоянными интенсивностями потоков гибели и размножения, является простейшей эргодической системой. Размеченный граф состояний для такой системы представлен на рис. 3.9.

Предельные (финальные) вероятности состояний для простейшего эргодического процесса гибели и размножения, находящегося в стационарном режиме, определяются по следующим формулам:

Правило. Вероятность k -гo состояния в схеме гибели и размножения равна дроби, в числителе которой стоит произведение всех интенсивностей размножения, стоящих левее S k , а в знаменателе - произведение всех интенсивностей гибели, стоящих левее S k , умноженной на вероятность кранного левого состояния системы P 0 .

В предыдущем примере для стационарного режима если интенсивность поступления автомобилей постоянная (l(t) = l = const ), то финальные вероятности состояний при условии, что нет ограничений на число автомобилей на предприятии, равны

При этом математическое ожидание числа эксплуатируемых автомобилей равно его дисперсии:

M = D = l /m. (3.10)

Если существует ограничение по числу автомобилей на предприятии (не более n ), то финальные вероятности можно записать в таком виде:

где ρ = l /m .

где k = 0, 1, 2, ..., n .

Математическое ожидание числа эксплуатируемых автомобилей в стационарном режиме

Пример 2. В состав поточной лини входит четыре станка. Бригада в составе четырех человек обслуживающего персонала проводит профилактический ремонт каждого из них. Суммарный поток моментов окончания ремонтов для всей бригады - пуассоновский с интенсивностью l(t). После окончания ремонта станок проверяется; с вероятностью Р он оказывается работоспособным (время проверки мало, и им можно пренебречь по сравнению со временем профилактики). Если станок оказывается неработоспособным, то вновь проводится его профилактика (время на которую не зависит от того, проводилась ли она ранее) и т. д. В начальный момент все станки нуждаются в профилактическом ремонте. Требуется:

1. Построить граф состояний для системы S (четыре станка).

2. Написать дифференциальные уравнения для вероятностей состояний.

3. Найти математическое ожидание числа станков M t , успению прошедших профилактику к моменту t .

Решение.

Граф состояний показан на рис. 3.10, в котором:

S 0 – все четыре станка нуждаются в профилактическом ремонте;

S 1 – один станок успешно прошел профилактику, а три нуждаются в профилактическом ремонте;

S 2 – два станка успешно прошли профилактику, а два нуждаются в профилактическом ремонте;

S 3 – три станка успешно прошли профилактику, один нуждается в профилактическом ремонте;

S 4 – все четыре станка успешно прошли профилактику.

Рис. 3.10. Граф состояний системы

Каждый профилактический ремонт успешно заканчивается с вероятностью P , что равносильно P -преобразованию потока окончаний ремонтов, после которого он останется пуассоновским, но с интенсивностью Pl(t) . В этом примере мы имеем дело с процессом чистого размножения с ограниченным числом состояний.

Уравнения Колмогорова имеют следующий вид:

Начальные условия P 0 (0) = 1, P 1 (0) = … = P 4 (0) = 0. При постоянной интенсивности l(t) = l и вероятности состоянии определяются по следующим формулам:

Математическое ожидание числа дисков, успешно прошедших профилактику к моменту t, равно

где n = 4.

Пример 3. Рассмотрим производство автомобилей на заводе. Поток производимых автомобилей - нестационарный пуассоновский с интенсивностью l(t). Найдем одномерный закон распределения случайною процесса X(t) - число выпушенных автомобилей к моменту времени t , если в момент t = 0 начат выпуск автомобилей.

Решение

Очевидно, что здесь процесс чистого размножения без ограничения на число состояний, при этом l i (t) = l(t) , так как интенсивность выпуска автомобилей не зависит от того, сколько их уже выпушено. Граф состояний такого процесса показан на рис. 3.11.

Рис. 3.11. Граф состояний

Одномерный закон распределения случайного процесса Х(t) для графа, изображенного на рис. 3.11, определяется следующей системой уравнений Колмогорова:

Так как число выпушенных автомобилей X(t) на любой фиксированный момент t распределено по закону Пуассона с параметром

M = D = a(t).

Рассмотренный в этом примере процесс X(t) называетсянеоднородным процессом Пуассона. Если интенсивность l(t) = l = const , то получим однородный процесс Пуассона . Для такого процесса при P 0 (0) = 1, P i (0) = 0 (i > 0)

Характеристиками процесса Пуассона будут

M = D = l×t.

Задача 1. Имеется прибор, который состоит из четырех узлов; поток отказов – простейший, среднее время безотказной работы каждого узла равно 11 час. Отказавший узел сразу начинает ремонтироваться; среднее время ремонта узла равно 2 час. (поток восстановления простейший). Найти среднюю производительность прибора, если при четырех работающих узлах она равна 100%, при трех 60%, при двух и менее прибор вообще не работает.

В процессе Пуассона вероятность изменения за время (t, t~\~h) не зависит от числа изменений за время (0, t). Простейшее обобщение состоит в отказе от этого предположения. Предположим теперь, что если за время (0, t) осуществилось п изменений, то вероятность нового изменения за время (t, t h) равна \nh плюс слагаемое более высокого порядка малости по сравнению с /г; вместо одной постоян­ной X, характеризующей процесс, мы имеем последовательность постоянных Х0, Xj, Х2

Удобно ввести более гибкую терминологию. Вместо того чтобы говорить, что п изменений произошли за время (0, t), будем гово­рить, что система находится в состоянии Еп. Новое изменение вызывает тогда переход Еп->Еп+1. В процессе чистого размно­жения переход из Еп возможен только в Еп+1. Такой процесс характеризуют следующие постулаты.

Постулаты. Если в момент t система находится в состоя­нии Еп(п~ 0, 1, 2,...), то вероятность того, что за время (t, t -)- h) осуществится переход в Еп + 1, равна Хп/г-|~ о (А). Вероятность иных изменений имеет более высокий порядок малости, чем h.

") Так как мы считаем h положительной величиной, то, строго говоря, Рп (t) в (2.4) следует рассматривать как правую производную. Но в действи­тельности это обычная двусторонняя производная. В самом деле, член о (К) в формуле (2.2) не зависит от t и потому не изменится, если t заменить на t - h. Тогда свойство (2.2) выражает непрерывность, а (2.3) дифферен- цируемос.ь в обычном смысле. Это замечание применимо и в дальнейшем и не будет повторяться.

Отличительной чертой этого предположения является то, что время, которое система проводит в любом индивидуальном состоя­нии, не играет роли: как бы долго система ни оставалась в одном состоянии, внезапный переход в другое состояние остается одинаково возможным.

Пусть снова P„(t) - вероятность того, что в момент t система находится в состоянии Еп. Функции Рп (t) удовлетворяют системе дифференциальных уравнений, которые могут быть выведены с помощью рассуждений предыдущего параграфа, с тем только изме­нением, что (2.2) заменяется на

Рп (t-\-h) = Рп (0(1- V0 + Рп-1 (0\-ih + 0 (А)- (3.1)

Таким образом, мы получаем основную систему дифференциаль­ных уравнений:

p"n{t) = -lnPn{t) + ln_xPn_x{t) («> 1),

P"0(t) = -l0P0(t).

Мы можем вычислить P0(t) и затем последовательно все Pn(t). Если состояние системы представляет собой число изменений за время (0, (), то начальным состоянием является £0, так что PQ (0) = 1 и, следовательно, Р0 (t) - е~к«". Однако не обязательно, чтобы система исходила из состояния £0 (см. пример 3, б). Если в момент 0 система находится в состоянии £;, то

Р. (0) = 1. Рп (0) = 0 для п Ф I. (3.3)

Эти начальные условия единственным образом определяют решения }