Слюна (все о слюне). Что входит в состав слюны человека и каковы ее функции? Вещество слюны которое склеивает пищевые частицы

Слюна содержит фермент альфа-амилазу, белок, соли, птиалин, разнообразные неорганические вещества; анионы Сl, катионы Са, Nа, К. Установлена зависимость между их содержанием в слюне и сыворотке крови. В секрете СЖ обнаруживаются небольшие количества тиоционина, который является ферментом и активирует птиалин в отсутствие NaСl. Слюна обладает важной способностью - очищать полость рта и тем самым улучшать ее гигиену. Однако более важным и существенным фактором является способность слюны регулировать и поддерживать водный баланс. Строение слюнных желез устроено так, что они обычно прекращают выделять слюну по мере снижения количества жидкости в организме. В этом случае появляется жажда и сухость в полости рта.

Выделение слюны

Околоушная слюнная железа продуцирует секрет в виде серозной жидкости и не вырабатывает слизь. Поднижнечелюстная слюнная железа и в большей степени подъязычная кроме серозной жидкости продуцируют также и слизь. Осмотическое давление секрета обычно низкое, повышается оно по мере увеличения скорости выделения секрета. Единственный фермент птиалин, вырабатывающийся в околоушной и поднижнечелюстной СЖ участвует в расщеплении крахмала (оптимальным условием его расщепления является pH 6,5). Птиалин инактивируется при pH меньше 4,5, а также при высокой температуре.

Секреторная активность слюнной железы зависит от многих факторов и определяется такими понятиями, как условные и безусловные рефлексы, чувство голода и аппетит, психическое состояние человека, а также механизмами, возникающими во время приема пищи. Все функции в организме взаимосвязаны. Акт приема пищи связан со зрительной, обонятельной, вкусовой, эмоциональной и другими функциями организма. Пища, раздражая своими физическими и химическими агентами нервные окончания слизистой оболочки полости рта, вызывает безусловный рефлекс-импульс, который передается в кору головного мозга и гипоталамическую область по нервным проводящим путям, стимулируя жевательный центр и слюноотделение. Муцин, зимоген и другие ферменты поступают в полости альвеол, далее - в слюнные протоки, которые стимулируют нервные проводящие пути. Парасимпатическая иннервация способствует выделению муцина и секреторной активности клеток каналов, симпатическая - управляет серозными и миоэпителиальными клетками. При употреблении вкусной пищи в слюне содержится небольшое количество муцина и энзимов; при приеме кислых продуктов в слюне определяется высокое содержание белка. Невкусные продукты и некоторые вещества, например сахар, ведут к образованию водянистого секрета.

Акт жевания происходит благодаря нервной регуляции мозга через пирамидальный тракт и другие его структуры. Координация разжевывания пищи осуществляется нервными импульсами, идущими от полости рта к моторному узлу. Необходимое для разжевывания пищи количество слюны создает условие для нормального пищеварения. Слюна смачивает, обволакивает и растворяет формирующийся пищевой комок. Снижение слюноотделения вплоть до полного отсутствия слюны развивается при некоторых заболеваниях СЖ, например при болезни Микулича. Также и обильное слюноотделение вызывает локальное раздражение слизистой оболочки, стоматит, заболевание десен и зубов и отрицательно влияет на протезы и металлоконструкции в полости рта, вызывает обезвоживание организма. Изменение секреции СЖ приводит к нарушению желудочной секреции. Синхронность в работе парных СЖ недостаточно изучена, хотя имеются указания на ее зависимость от ряда факторов, например от состояния зубов на разных сторонах зубного ряда. В покое секрет выделяется незначительно, в период раздражения - прерывисто. В процессе пищеварения слюнные железы периодически активизируют свою деятельность, что многими исследователями связывается с переходом желудочного содержимого в кишечник.

Как выделяется слюна?

Механизм выделения секрета слюнной железы не совсем ясен. Например, при денервации околоушной СЖ после введения атропина развивается интенсивный секреторный эффект, однако количественный состав секрета не меняется. С возрастом в слюне снижается содержание хлора, увеличивается количество кальция, меняется pH секрета.

Многочисленные экспериментальные и клинические исследования показывают, что имеется связь между СЖ и железами внутренней секреции. Экспериментальные исследования показали, что околоушная СЖ раньше, чем поджелудочная железа, вступает в процесс регуляции сахара крови. Удаление околоушных СЖ у взрослых собак приводит к инсулярной недостаточности, развитию гликозурии, так как в секрете СЖ содержатся вещества, задерживающие выделение сахара. Слюнные железы влияют на сохранение подкожной жировой клетчатки. Удаление околоушных СЖ у крыс вызывает резкое падение содержания кальция в их трубчатых костях

Отмечена связь деятельности СЖ с половыми гормонами. Известны случаи, когда врожденное отсутствие обеих СЖ сочеталось с признаками полового недоразвития. Различие частоты опухолей СЖ в возрастных группах свидетельствует о влиянии гормонов. В клетках опухоли, как в ядрах, так и в цитоплазме, обнаруживаются рецепторы к эстрогену и прогестерону. Все перечисленные данные о физиологии и патофизиологии СЖ многими авторами увязываются с инкреторной функцией последних, хотя соответствующих убедительных сведений не приводится. Лишь немногие исследователи считают, что инкреторная функция СЖ не вызывает сомнений.

Нередко у человека после травмы или резекции околоушной СЖ развивается состояние, называемое околоушным гипергидрозом или аурикулотемпоральным синдромом. Развивается своеобразный симптомо- комплекс, когда во время приема пищи при раздражении вкусовым агентом кожа околоушно-жевательной области резко краснеет и появляется сильное локальное потоотделение. Патогенез этого состояния совершенно неясен. Предполагают, что в его основе лежит аксон-рефлекс, осуществляемый вкусовыми волокнами языкоглоточного нерва, проходящими по анастомозам в составе ушно- височного или лицевого нервов. Некоторые исследователи связывают развитие данного синдрома с травмой ушно-височного нерва.

Наблюдения над животными показали наличие регенераторных способностей околоушной СЖ после резекции органа, выраженность которых зависит от многих факторов. Так, у морских свинок отмечена высокая регенераторная способность околоушной СЖ со значительным восстановлением функции после резекции. У кошек и собак эта способность значительно снижена, причем при повторной резекции функциональная способность восстанавливается очень медленно или вообще не восстанавливается. Предполагается, что после удаления противоположной околоушной СЖ функциональная нагрузка повышается, регенерация резецированной железы ускоряется и становится более полной.

Ткань СЖ весьма чувствительна к проникающему излучению. Облучение в небольших дозах вызывает временное подавление функции железы. Функциональные и морфологические изменения в железистой ткани СЖ наблюдались в эксперименте при облучении других областей тела или общей иррадиации.

Практические наблюдения показывают, что любая из СЖ может быть удалена без ущерба для жизни пациента.

Мы регулярно сглатываем слюну. И привыкли, что в ротовой полости всегда влажно и прекращение достаточной выработки этой биологической жидкости воспринимаем с подозрением. Как правило, повышенная сухость во рту является признаком какой-либо болезни.

Слюна – привычная и необходимая биологически активная жидкость. Способствует поддержанию уровня иммунной защиты в ротовой полости, перевариванию пищи. Какой состав слюны человека, нормы продукции жидкости, а также физические и химические свойства?

Слюна – это биологическая субстанция, выделяемая слюнными железами. Продуцируют жидкость 6 крупных желез – подчелюстные, околоушные, подъязычные – и множество мелких, расположенных в ротовой полости. В сутки выделяется до 2,5 л жидкости.

Состав выделений слюнных желез отличается от состава жидкости в . Это объясняется присутствием остатков пищи, наличием микроорганизмов.

Функции биологической жидкости:

  • смачивание пищевого комка;
  • обеззараживающая;
  • защитная;
  • способствует артикуляции и глотанию пищевого комка;
  • расщепление углеводов в ротовой полости;
  • транспортная – жидкость смачивает эпителий ротовой полости и участвует в обмене веществ между слюной и слизистой оболочкой ротовой полости.

Механизм выработки слюны

Физические свойства и состав слюны

Биологическая жидкость у здорового человека обладает рядом физических и химических свойств. Они представлены в таблице.

Таблица 1. Нормальные характеристики слюны.

Основным компонентом ротовой жидкости является вода – до 98%. Остальные составляющие можно условно разделить на кислоты, минеральные вещества, микроэлементы, ферменты, металлические соединения, органику.

Органический состав

Подавляющее число компонентов органического происхождения, входящих в состав слюны, имеют белковую природу. Их количество варьируется от 1,4 до 6,4 г/л.

Виды белковых соединений:

  • гликопротеины;
  • муцины - высокомолекулярные гликопротеины, обеспечивающие проглатывание пищевого комка –0,9–6,0 г/л;
  • иммуноглобулины класса А, G и М;
  • сывороточные белковые фракции – ферменты, альбумины;
  • саливопротеин – белок, участвующий в процессе формирования отложений на зубах;
  • фосфопротеин – связывает ионы кальция с образованием зубного камня;
  • – участвует в процессах расщепления ди- и полисахаридов на более мелкие фракции;
  • мальтаза – фермент, расщепляющий мальтозу и сахарозу;
  • липаза;
  • протеолитический компонент – для расщепления белковых фракций;
  • липолитические составляющие – действуют на жирную пищу;
  • лизоцим – оказывает обеззараживающее действие.

В отделяемом слюнных желез обнаруживаются незначительные количества холестерина, соединений на его основе, жирные кислот.

Состав слюны

Кроме этого, в ротовой жидкости присутствуют гормоны:

  • кортизол;
  • эстрогены;
  • прогестерон;
  • тестостерон.

Слюна участвует в смачивании пищи и формировании пищевого комка. Уже в ротовой полости ферменты расщепляют сложные углеводы на мономеры.

Минеральные (неорганические) компоненты

Неорганические фракции в слюне представлены кислотными остатками солей и катионами металлов.

Минеральный состав секрета слюнных желез:

  • хлориды – до 31 ммоль/л;
  • бромиды;
  • иодиды;
  • кислород;
  • азот;
  • углекислота;
  • соли мочевой кислоты – до 750 ммоль/л;
  • анионы фосфорсодержащих кислот;
  • карбонаты и бикарбонаты – до 13 ммоль/л;
  • натрий – до 23 ммоль/л;
  • – до 0,5 ммоль/л;
  • кальций – до 2,7 ммоль/л;
  • стронций;
  • медь.

Кроме этого, в слюне присутствуют незначительные количества витаминов различных групп.

Особенности состава

Состав слюны может меняться в течение возраста, а также при наличии заболеваний

Химический состав ротовой жидкости варьируется в зависимости от возраста пациента, его текущего состояния, наличия вредных привычек, скорости ее продукции.

Слюна является динамической жидкости, то есть соотношение различных веществ варьируется в зависимости от того какая пища находится в ротовой полости на текущий момент времени. Например, употребление углеводов, сладостей способствует увеличению глюкозы и лактата. У курильщиков повышен уровень солей радона, в отличие от некурящих.

Существенное влияние оказывает возраст человека. Так, у пожилых людей повышается уровень кальция в слюнной жидкости, что провоцирует образование камня на зубах.

Изменения количественных показателей зависят от общего состояния человека, наличия хронических патологий или воспалительного процесса в острой стадии. Также существенное влияние оказывают препараты, принимаемые на постоянной основе.

Например, при гиповолемии, сахарном диабете происходит резкое снижение продукции секрета слюнных желез, но возрастает количество глюкозы. При заболеваниях почек – уремии различного генеза – увеличиваются показатели азота.

Во время воспалительных процессов в ротовой полости отмечается уменьшение лизоцима с увеличением продукции ферментов. Это усугубляет течение заболевания и способствует разрушению тканей пародонта. Недостаток ротовой жидкости – является кариесогенным фактором.

Тонкости секреции слюны

0,5 мл слюны в минуту должно вырабатываться у здорового человека в дневное время

Контролирует работу слюнных желез вегетативная нервная система с центром в продолговатом мозге. Продукция слюнной жидкости варьируется в зависимости от времени суток. В ночное время и во время сна ее количество резко снижается, в дневное время увеличивается. В состоянии наркоза работа желез полностью прекращается.

В период бодрствования выделяется 0,5 мл слюны в минуту. Если происходит стимуляция желез – например, во время приема пищи – то они продуцируют до 2,3 мл жидкого секрета.

Состав отделяемого каждой железы различен. При попадании в ротовую полость происходит смешивание, и его называют уже «ротовая жидкость». В отличие от стерильного секрета слюнных желез, она содержит полезную и условно-патогенную микрофлору, продукты метаболизма, слущенный эпителий ротовой полости, отделяемое из гайморовых пазух, мокроту, красные и белые кровяные клетки.

На показатели рН оказывает влияние соблюдение гигиенических требований, характер пищи. Так, при стимулировании работы желез, показатели сдвигаются в щелочную сторону, при недостатке жидкости – в кислую.

При различных патологических процессах происходит уменьшение или увеличение секреции ротовой жидкости. Так, при стоматитах, невралгиях ветвей тройничного нерва, различных бактериальных заболеваниях наблюдается гиперпродукция. При воспалительных процессах в дыхательной системе, продукция секрета слюнных желез снижается.

Некоторые выводы

  1. Слюна – это динамическая жидкость, чутко реагирующая на все процессы, происходящие в организме на текущий момент времени.
  2. Ее состав постоянно изменяется.
  3. Слюна выполняет множество функций, кроме смачивания ротовой полости и пищевого комка.
  4. Изменения состава ротовой жидкости может свидетельствовать о патологических процессах, происходящих в организме.

Инструкция к применению, слюна:


Расскажите друзьям! Расскажите об этой статье своим друзьям в любимой социальной сети с помощью социальных кнопок. Спасибо!

Телеграм

Вместе с этой статьей читают:


  • Тонкий кишечник человека: анатомия, функции и процесс…

Григорьев И.В., Уланова Е.А., Артамонов И.Д. Белковый состав смешанной слюны человека: механизмы психофизиологической регуляции // Вестник РАМН . 2004. № 7. С. 36-47.

Белковый состав смешанной слюны человека:
механизмы психофизиологической регуляции

1 Григорьев И.В., 2 Артамонов И.Д., 3 Уланова Е.А.

1 Российский научный центр восстановительной медицины и курортологии МЗ РФ,
2 Институт биоорганической химии им. М.М.Шемякина и Ю.А.Овчинникова РАН,
3 Витебский государственный медицинский университет

Введение

В прошедшие десять лет наблюдался сильный всплеск внимания к изучению слюны и её свойств. Многочисленные данные, полученные в этой области науки, позволяют сделать вывод, что слюна человека представляет собой уникальную субстанцию, имеющую большие потенциальные возможности для использования в фундаментальных исследованиях и в медицинской диагностике. Наибольшее внимание в настоящее время уделяется изучению перспектив анализа слюны в диагностических целях. Это обусловлено целым рядом причин. Так, использование слюны может быть не только дополнительным методом в клинических исследованиях, но и имеет много преимуществ по сравнению с анализом крови и мочи: сбор слюны прост и удобен для случаев неклинических окружающих условий; он безболезненный; риск заражения медперсонала значительно меньше, чем при работе с кровью; содержание некоторых молекул (например, определённых гормонов, антител и лекарств) в слюне отражает их концентрацию в крови . Также слюна может быть источником для изучения ДНК человека и находящихся в организме микробов. Высказывается мнение, что расширение использования слюны в клиническом анализе поможет ускорить переход от диагностики заболеваний к наблюдению за здоровьем . Высоки потенциальные возможности для использования слюны с целью выявления системных заболеваний и локальных патологий . Наличие определённых корреляций между расстройствами разных физиологических систем и функциональной активностью слюнных желёз дало повод некоторым исследователям называть эти железы «зеркалом болезней» . Мы, в свою очередь, полагаем, что есть все основания рассматривать слюну (особенно смешанную слюну, которая является результатом активности всех слюнных желёз) как «зеркало» психофизиологического состояния организма .

Несмотря на большой объём анатомо-физиологических данных о слюнных железах и их секреторных выделениях, остаётся нерешённым до конца вопрос о том, как именно работает механизм, который управляет формированием биохимического состава слюны. В настоящее время значительная часть исследователей склоняется к выводу о решающей роли психоэмоциональных факторов в этих процессах .

Одним из наиболее плодотворных направлений является исследование корреляций психоэмоционального состояния и содержания белков в слюне. В своих экспериментах мы обнаружили, что психоэмоциональное состояние человека контролирует белковый состав смешанной слюны . В этой статье мы представляем: 1) краткое обобщение современных данных о белках слюны; 2) основные результаты наших исследований по влиянию психоэмоционального состояния на белковый состав слюны; 3) описание ключевых элементов предполагаемого психофизиологического механизма, который управляет формированием белкового состава слюны человека.

Биохимический состав слюны. Белки слюны

Как известно, формирование слюны происходит с помощью трёх пар больших слюнных желез (околоушных/gl. parotis, подчелюстных/gl. submaxillares, подъязычных/gl. sublingules) и большого количества (600-1000) малых слюнных желёзок, локализованных на слизистой оболочке губ, языка, дёсен, нёба, щёк, миндалин и носоглотки. Каждая из этих желёз образует свой собственный слюнной секрет, который выделяется в ротовую полость и участвует в формировании «конечной» субстанции - смешанной слюны.

Смешанная слюна выполняет многообразные функции: пищеварительную, минерализующую, очищающую, защитную, бактерицидную, иммунную, гормональную и др.; в связи с чем она имеет сложный биохимический состав, в формировании которого участвуют разнообразные белки, липиды (холестерин и его эфиры, свободные жирные кислоты, глицерофосфолипиды и т.д.), стероидные соединения (кортизол, эстрогены, прогестерон, тестостерон, дегидроэпиандростерон, андростерон, 11-ОН-андростенедион и др.), углеводы (олигосахаридные компоненты муцинов, свободные гликозаминогликаны, ди- и моносахариды), ионы (Na + , K + , Ca 2+ , Li + , Mg 2+ , I - , Cl - , F - и т.д.), небелковые азотсодержащие вещества (мочевина, мочевая кислота, креатин, аммиак, свободные аминокислоты), витамины (С, В 1 , В 2 , В 6 , Н, РР и т.д.), циклические нуклеотиды и другие соединения. В слюне обнаружены также в относительно небольшом количестве лейкоциты, бактерии и части слущивающихся клеток эпителиальной ткани. Ежедневно у человека выделяется 0,5-2 литра слюны. Свыше 90 % всей массы слюнного секрета приходится на воду .

Важнейшим компонентом слюны являются белковые соединения, значительную часть которых условно можно разделить по своим функциональным свойствам на три группы: участвующие в пищеварительных процессах, связанные с местным иммунитетом и выполняющие регуляторные функции.

Белки, участвующие в пищеварительных реакциях , представлены гидролитическими ферментами, основным из которых является α- амилаза (расщепляет α-1-4-глюкозидные связи гомополисахаридов до мальтозы и небольших олигосахаридов), которая может составлять до 10% всех белков слюны. Кроме амилазы в состав слюны входят такие пищеварительные ферменты как: мальтаза, гиалуронидаза, трипсиноподобные ферменты, пепсиноген, пептидазы, эстеразы, липазы, нуклеазы, пероксидазы, кислые и щелочные фосфатазы, лактопероксидаза и т.д. Показано, что часть этих ферментов секретируется слюнными железами (напр., амилаза и лактопероксидаза), ряд других поступает из крови (напр., пепсиноген) или имеют «смешанное» происхождение (напр., кислая и щелочная фосфатазы) и некоторые являются продуктами метаболизма лейкоцитов или микробов (напр., мальтаза, альдолаза) .

Иммунные факторы слюны представлены в основном иммуноглобулином А и в меньшей степени IgG , IgM и IgE . Неспецифическими защитными свойствами обладают следующие белки слюны. Лизоцим , низкомолекулярный белок, гидролизует β-1-4-гликозидную связь полисахаридов и мукополисахаридов, содержащих мурамовую кислоту, в клеточных стенках микроорганизмов . Лактоферрин участвует в различных реакциях защиты организма и регуляции иммунитета . Малые фосфопротеины, гистатины и статерины , играют важную роль в антимикробном действии . Цистатины являются ингибиторами цистеиновых протеиназ и могут выполнять защитную роль при процессах воспаления в ротовой полости . Муцины - крупные гликопротеины, которые в основном обеспечивают вязкую природу слюны - запускают специфическое взаимодействие между стенкой бактериальных клеток и комплементарными галактозидными рецепторами на мембране эпителиальных клеток . Подобные свойства обнаружены также у амилазы , фибронектина и β 2 -микроглобулина .

Третью крупную группу белков слюны составляют биологически активные вещества , регулирующие функции разнообразных систем организма. Так слюнные железы выделяют целый ряд веществ с гипо- и гипертензивным действием: калликреин, гистамин, ренин, тонин и др. Белковые факторы слюны человека, влияющие на гемопоэз, представлены эритропоэтином , фактором гранулоцитоза, тимоциттрансформирующим и колониестимулирующим факторами . Широко представлены в слюне разнообразные ростовые регуляторы: факторы роста нервов, эпидермиса, мезодермы, фибробластов; инсулин-подобный фактор роста и др. Большинство биологически активных факторов слюны являются пептидами или гликопротеинами. Для многих из них (факторы роста нервов и эпидермиса, паротин, калликреин, тонин и др.) доказано, что они выделяются из слюнных желёз как в ротовую полость, так и в кровеносное русло .

Низкомолекулярные белки слюны с молекулярной массой < 3 кДа образуются в основном путём протеолиза пролин-обогащённых белков, гистатинов и статеринов .

В слюне человека также обнаружены различные нейропептиды: метионин-энкефалин , субстанция Р , β -эндорфин , нейрокинин А, нейропептид Y , вазоактивный желудочный полипептид , кальцитонин-генерируемый пептид .

Одним из важнейших методов анализа белкового состава слюны является электрофорез. Использование для этой цели электрофореза в 12%-м полиакриламидном геле дало разные результаты у различных исследовательских групп. Shiba A. et al. получил 22 белковые полосы в препаратах из смешанной слюны, Oberg S.G. et al. - 29 полос, Rahim Z.H. et al. - 20 полос. Современная приборная база позволяет обнаружить до 30-40 различных белковых фракций в одномерных электрофореграммах слюнных препаратов. При этом индивидуальные отличия белковых электрофореграмм слюны оказываются, как правило, в концентрации отдельных белков, а не в их количестве. Повторный сбор слюны одних и тех же людей показал сохраняющееся постоянство белкового спектра у них .

Непсихические факторы, влияющие на белковый состав слюны

Несмотря на большое количество научных данных о слюнных железах и слюне, до сих пор не ясно, как именно работает физиологический механизм, регулирующий белковый состав слюны.

Как известно, слюнные железы имеют богатую иннервацию волокнами вегетативной нервной системы . Поэтому естественно предполагать, что нервная система является основным регулятором функций слюнных желёз и, в конечном итоге, белкового состава слюны. Данные об участии нервной системы и психоэмоциональных факторов в этой регуляции будут обсуждены ниже.

Не относящиеся непосредственно к активности нервной системы различные физиологические и физические факторы, как мы предполагаем, являются второстепенными в отношении формирования белкового состава слюны. Как показывает большое число исследований, физические и физиологические факторы или не имеют ярко выраженного влияния на весь белковый состав слюны или же изменяют содержание в слюне одного или нескольких белков. Так, например, возраст , пол , циркадные ритмы , пищевые эффекты не имеют значительных влияний на белковый состав слюны. С другой стороны обнаружены изменения уровня определённых белков на фоне: заболеваний (кариеса - IgA , пародонтоза - ингибитор металлопротеазы-1 , псориаза - лизоцим , воспаления полости рта - фактор роста эпидермиса ), курения - фактор роста эпидермиса , физической нагрузки - IgA . Вместе с тем, например, при кариесе среднестатистический уровень крупных фракций белков в слюне не меняется .

К числу других факторов, которые могли бы оказывать влияние на концентрацию определённых белков слюны, также относят: месячные циклы и беременность , медикаментозное лечение , белковый полиморфизм , популяционные особенности человека, наследственность, специфические различия в белок-микробном взаимодействии, синергичное или антагоничное взаимодействие между белками .

Однако, влияние вышеописанных разнообразных факторов на белковый состав слюны пока недостаточно исследовано.

Вторым после нервной системы универсальным физиологическим элементом, участвующим в регуляции формирования белкового состава слюны, считается гемато-саливарный барьер .

Предполагается, что на синтез различных белков в слюнных железах оказывают регуляторное воздействие гормональные вещества, такие как пролактин, андрогены, тироидные гормоны и кортикостероиды, влияющие на секреторные клетки через гемато-саливарный барьер . Однако, в целом вопрос о работе гемато-саливарного барьера пока мало изучен.

Влияние психики на биохимический состав слюны

Факт воздействия психоэмоционального состояния на величину слюнного потока был неоднократно подтверждён как в начале ХХ века , так и в его конце . Однако, вопрос о влиянии психики на биохимический (и в частности, белковый) состав слюны оставался до сих пор открытым. В силу разных причин не удавалось сформировать ясную и адекватную теорию в этой области психофизиологии. Отчасти такая ситуация была связана с методическими трудностями (сложность учёта одновременного воздействия разнообразных физиологических факторов, а также объективной оценки сиюминутного психоэмоционального состояния человека и т.п.). Поэтому, как правило, для оптимизации изучения влияния разных психоэмоциональных состояний на физиологию слюноотделительных процессов используют различные стандартные психические и психофизические нагрузки (умственные тесты, игровые ситуации и другие психофизические нагрузки).

В ходе этих исследований было обнаружено, что определённые виды психоэмоционального стресса вызывают изменение в слюне уровня ингибиторов моноаминоксидазы А и В , калликреина , катехоламинов , кортизола , интенсивности свободно радикальных процессов и активности антиоксидантных ферментов . Также было показано, что содержание секреторного иммуноглобулина А снижалось при эмоциональном переживании и хроническом стрессе , но повышалось при эмоциональном раздражение , остром стрессе и позитивном настроении . В связи с такой реакцией уровня IgA высказывались предположения о влиянии настроения на иммунитет, но серьёзных работ в этом направлении и развития этой очевидной идеи пока не проведено .

Кроме вышеупомянутого, было обнаружено, что концентрация кортизола в слюне детей коррелирует с их поведенческими реакциями . Уровень тестостерона в слюне детей согласуется с их способностью к обучаемости , а также с некоторыми депрессивными состояниями у взрослых . На то, что идея использования стероидных гормонов для оценки состояний психики остаётся весьма привлекательной для исследователей, указывает наличие нескольких десятков публикаций за последнее десятилетие, большинство из которых посвящено влиянию настроения на содержание кортизола и тестостерона в слюне.

До сих пор в большинстве случаев исследователи пытались оценить влияние психоэмоционального состояния на уровень определённого вещества в слюнном секрете. Мы обнаружили в своих исследованиях, что наблюдение одновременно уровня многих белков с помощью электрофореза в полиакриламидном геле очень информативно для выявления корреляции между психоэмоциональным состоянием и белковым составом слюны .

Метод электрофоретического анализа белкового состава слюны

Слюна у обследуемых лиц собиралась (путём обычного сплёвывания в чистый химический стакан) утром до еды в количестве до 200 мкл. После чего она центрифугировалась 10 мин при 10000 об/мин и хранилась в морозильной камере при -20°С.

Для денатурации белков слюны в каждую полученную пробу добавляли 1/2 (от её объёма) буфера, содержащего 100 мМ Трис (рН 7,5), 7% додецилсульфата натрия, 2% меркаптоэтанола, 0,02% бромфенолового голубого, 20% глицерина. Смесь тщательно встряхивали и инкубировали 10 мин при 20°С. 20 мкл из каждого полученного таким образом препарата слюны использовали для электрофоретического анализа в полиакриламидном геле по методу Laemmli U. K. . Электрофорез осуществлялся в 12% полиакриламидном геле толщиной 0,75 мм и размерами 10х8 см.

Для определения локализации белков, гель после электрофореза инкубировали 1 час в окрашивающем растворе (25% этиловый спирт, 10% ледяная уксусная кислота, 2 мг/мл кумаси синий), затем дважды промывали дистиллированной водой и инкубировали 1-2 часа в обескрашивающем растворе (25% этиловый спирт, 10% ледяная уксусная кислота) до отчётливого проявления полос белковых фракций.

Слюна для анализа собиралась у людей, имевших различные психоэмоциональные состояния: контрольная группа - люди без расстройств психической сферы (n=85); группы стационарных пациентов с депрессивным синдромом разной глубины и вида (на фоне психических /n=90/ и соматических /n=80/ заболеваний), тревожным расстройством (n=4), шизофренией (n=36), наркозависимостью (n=30), паническим синдромом (n=4), расстройством личности (n=10). Исследовались также воздействия положительных и отрицательных естественных и искусственно-вызванных (размышление о приятном и неприятном) психоэмоциональных состояний.

Особенности различных видов белкового состава смешанной слюны
и их предполагаемая связь с активностью регуляторных вегетативных центров

Сопоставление электрофоретических картин белкового состава смешанной слюны и психоэмоционального состояния, на фоне которого были взяты пробы, позволило нам обнаружить, что между ними существует отчётливое соответствие. Оказалось, что белковый состав смешанной слюны чутко реагирует на изменение психоэмоционального состояния, при этом происходит специфическая трансформация белкового состава .

Изученные нами электрофоретические картины белкового состава смешанной слюны (в общей сложности более 1200 шт.) могут быть условно распределены на восемь основных групп, которые различаются между собой определенным соотношением преобладающих белковых фракций. Мы предполагаем, что такое число наблюдаемых типов белкового состава смешанной слюны определяется количеством возможных сочетаний совместной активности трёх вегетативных нервных центров, регулирующих работу больших слюнных желез.

На рис. 1 представлена одна из возможных простейших схем связи совокупной активности этих трёх нервных центров с картиной белкового состава слюны, наблюдаемой с помощью электрофореза в полиакриламидном геле. Мы условно предположили, что активность каждого из данных центров в отдельности контролирует в слюне уровень белков с определённой молекулярной массой:

    при активности только симпатического шейного центра (Ш), в ротовую полость выделяются преимущественно белки с молекулярной массой в области 50-60 кДа;

    при активности только верхнего слюноотделительного ядра (В), в ротовую полость выделяются преимущественно белки с молекулярной массой в области 30-35 кДа;

    при активности только нижнего слюноотделительного ядра (Н), в ротовую полость выделяются преимущественно белки с молекулярной массой в области < 30 кДа.

Из этих допущений следует, что:

    совместная активность верхнего слюноотделительного ядра и шейного центра при неактивном нижнем слюноотделительном ядре (ВШ) должна сопровождаться преобладанием в смешанной слюне белков в областях 30-35 кДа и 50-60 кДа;

    совместная активность нижнего и верхнего слюноотделительных ядер при неактивном шейном центре (НВ) должна сопровождаться преобладанием в смешанной слюне белков с молекулярной массой ≤ 30 кДа;

    совместная активность нижнего слюноотделительного ядра и шейного центра при неактивном верхнем слюноотделительном ядре (НШ) должна сопровождаться преобладанием в смешанной слюне белков с молекулярной массой 50-60 кДа и < 30 кДа;

    совместная активность всех трех вегетативных нервных центров (НВШ), регулирующих слюнные железы, будет сопровождаться высокой концентрацией в смешанной слюне белков с молекулярной массой 50-60 кДа, 30-35 кДа и < 30 кДа;

    отсутствие активности в нижнем и верхнем слюноотделительных ядрах и в шейном центре (НВШ) будет сопровождаться сильным уменьшением уровня белков по всему наблюдаемому диапазону молекулярных масс.

Внутри каждой из восьми описанных групп белкового состава смешанной слюны существует определённое разнообразие дополнительных деталей.

Перечисленные варианты совокупной активности трех вегетативных нервных центров, регулирующих большие слюнные железы, представляют собой, как мы думаем, основной элемент контроля белкового состава смешанной слюны.

Мы предполагаем, что двумя другими важными факторами управления белкового состава смешанной слюны являются гемато-саливарный барьер и малые слюнные железы. Хотя эти факторы играют, скорее всего, модулирующую роль, внося дополнительные детали в картину белкового состава смешанной слюны, формируемую секреторной активностью больших слюнных желез под действием трех упомянутых вегетативных центров.

Гемато-саливарный барьер, как предполагается, также регулируется вегетативной нервной системой , под контролем которой он, вероятно, может изменять свою проницаемость для определенных белков, усиливая их транспорт из крови в слюну. Эта область пока слабо изучена.

Секреции малых слюнных желез богаты белком , но вопросы о регуляции этих желез и о вкладе их секреций в смешанную слюну также не достаточно изучены.

Таблица 1. Предполагаемые основные типы картин белкового состава смешанной слюны, соответствующие восьми возможным вариантам совокупной активности трех вегетативных нервных центров (Ш - симпатический в шейном отделе позвоночника, В и Н - соответственно верхний и нижний слюноотделительные парасимпатические центры в головном мозге), регулирующих большие слюнные железы.

Как было упомянуто выше, в своих исследованиях мы обнаружили, что картина белкового состава смешанной слюны зависит от характера психоэмоционального состояния человека. В таблице 1 представлена информация о том, на фоне каких психоэмоциональных состояний наблюдаются те или иные картины белкового состава смешанной слюны.

Наиболее часто наблюдаемой картиной белкового состава смешанной слюны является вариант НВШ (табл. 1, 4а). Он характерен для относительно-нейтрального (спокойного) психоэмоционального состояния человека с обычной здоровой психикой. Этот вариант условно обозначен как «умеренная» активность центров НВШ. При наблюдении отдельных людей в течение разных промежутков времени (дни, недели, месяцы) мы обнаружили, что картина белкового состава смешанной слюны практически не меняет своего вида, если слюна берётся в относительно нейтральном (спокойном, естественном) для данного человека психоэмоциональном состоянии. Изменения белкового состава смешанной слюны в таких случаях, как правило, очень незначительны и связаны преимущественно с колебаниями уровня одной-двух, редко больше, белковых фракций. Эти результаты подтверждаются в частности исследованиями Oberg et al. .

При усиленной положительной творческой психоэмоциональной активности, белковый состав смешанной слюны значительно обогащается белком, особенно в области 50-60 кДа (табл. 1, 4б). Мы предполагаем, что в этих состояниях усиливается деятельность симпатической ветви нервной системы. Этот вариант условно обозначен нами как «творческая» активность центров НВШ. Аналогичные картины белкового состава смешанной слюны мы наблюдали также в случаях положительных естественных эмоций, характерных для так называемого «приподнятого» или радостного настроения.

С другой стороны, при заболеваниях шизофренического характера может также происходить увеличение белков по всему наблюдаемому диапазону молекулярных масс и в частности в областях 50-60 кДа и 30-35 кДа (табл. 1, 4в). Однако в данных случаях в этих областях наблюдается специфическая деформация электрофоретических треков в виде элипсоидных форм и дугообразных изгибаний белковых полос. Мы предполагаем, что это может быть связано или с какой-то специфической модификацией белков из слюнных желез, или же с присутствием в слюне проникших из крови определенных белковых веществ. Этот вариант нами обозначен условно как «патологическая» активность центров НВШ.

Все прочие представленные варианты картин белкового состава смешанной слюны (табл. 1, варианты 1-3, 5-8) наблюдались при определенных естественных психоэмоциональных нагрузках, связанных преимущественно с психопатологическими состояниями. Среди этих наблюдений одним из наиболее интересных является то, что различные формы депрессии вызывают заметное уменьшение уровня белков в смешанной слюне (табл. 1, варианты 3, 8). Последние данные представлены в нашей более ранней публикации , где описана корреляция между уровнем белковой фракции вблизи 55 кДа и показаниями шкалы депрессии теста ММPI. Для выяснения деталей влияния различных других психопатологических состояний на белковый состав смешанной слюны требуются дальнейшие кропотливые исследования.

При анализе белкового состава смешанной слюны на фоне разнообразных психоэмоциональных состояний нами было обнаружено, что белковая фракция вблизи области 55 кДа является наиболее крупной у подавляющего большинства исследованных людей. Вместе с тем, уровень этой фракции в разных случаях может изменяться в очень широком диапазоне, по всей вероятности, на один-два порядка.

По нашим наблюдениям, большое разнообразие картин белкового состава смешанной слюны можно разделить, как уже говорилось, на ограниченное число групп с определенными признаками. Границы между этими группами не являются жесткими, т.к. существуют промежуточные виды белкового состава смешанной слюны с общими («междугрупповыми») признаками. Такое разнообразие имеет свою «изюминку» - оно отражает индивидуальные психофизиологические нюансы исследуемого человека и представляет естествоиспытателю крайне интересную и важную возможность для изучения психологической сферы. К сожалению, подробное рассмотрение разнообразия белкового состава смешанной слюны на фоне широкого спектра психоэмоциональных состояний выходит за рамки настоящей статьи, поэтому перейдем к рассмотрению данных, описывающих ключевые элементы психофизиологического механизма, осуществляющего контроль белкового состава слюны.

Элементы психофизиологического механизма,
регулирующего белковый состав смешанной слюны человека

Как было упомянуто выше, основными элементами психофизиологической регуляции белкового состава смешанной слюны человека считаются центры вегетативного контроля больших слюнных желёз. Эти железы иннервируются симпатическими и парасимпатическими нервами (рис. 2) . Парасимпатическая регуляция подчелюстных и подъязычных желёз осуществляется по рефлекторной дуге, включающей в себя: нейроны верхнего слюноотделительного ядра в стволе головного мозга; преганглионарные волокна, идущие в составе барабанной струны к подчелюстным и подъязычным узлам, которые расположены в теле каждой из соответствующих желез. От этих ганглиев отходят постганглионарные волокна к клеткам слюнных желёз. Нижнее слюноотделительное ядро продолговатого мозга передаёт регуляторные импульсы к околоушным железам через преганглионарные волокна n. glossopharyngeus и n. petrosum minor, а затем через нейроны ушного узла по волокнам височно-ушного нерва.

Симпатическая иннервация слюнных желёз включает следующие звенья. Нейроны, от которых отходят преганглионарные волокна, располагаются в боковых рогах спинного мозга на уровне Th II -Th VI . Эти волокна подходят к верхнему шейному ганглию, где заканчиваются на эфферентных нейронах, дающих начало аксонам, достигающим околоушных, подчелюстных и подъязычных желёз (в составе сосудистого сплетения, окружающего наружную сонную артерию).

В настоящий момент различными исследователями накоплено значительное количество данных о том, какие биохимические посредники могут участвовать в переносе регуляторных нервных импульсов внутрь секреторных клеток больших слюнных желез. Симпатические волокна, иннервирующие слюнные железы, содержат в своих симпатических окончаниях, как предполагается, преимущественно два нейромедиатора, норадреналин и адреналин . В научной литературе имеется больше данных по исследованию норадреналиновой регуляции слюнных желез.

Считается, что в регуляции работы слюнных желез наибольшую роль играет парасимпатическая иннервация, так как каждая их клетка богато оплетена веточками парасимпатических волокон. Предполагается, что несколько парасимпатических нейронов конвергирует на одну клетку. Основным переносчиком парасимпатического сигнала к секреторным клеткам слюнных желез является ацетилхолин . Другим важным нейромедиатором парасимпатических импульсов, рецепторы к которому локализованы в основном в мукозных клетках, является вазоактивный кишечный пептид (VIP) .

Парасимпатические нервные окончания, контактирующие с кровеносными капиллярами в слюнных железах, содержат, как считается, преимущественно два нейромедиатора пептидной природы: VIP и субстанцию Р (SP) . Предполагается, что последние участвуют в контроле проницаемости гемато-саливарного барьера.

Кроме этого, в нервных волокнах в слюнных железах были обнаружены и другие нейромедиаторы (аденозин трифосфат, гамма-аминобутировая кислота, гистамин, инсулин , нейрокинин А, кальцитонин ген-связанный пептид ), но их участие во внутриклеточной сигнализации секреторных клеток практически не изучено.

Внутриклеточная сигнализация, которая инициируется нервными импульсами в секреторных клетках слюнных желез, включает в себя следующие звенья: сигнальная молекула (нейромедиатор) → клеточный рецептор (трансмембранная белковая молекула) → регуляторный G-белок → специфический фермент → вторичный низкомолекулярный переносчик сигнала → воздействие на определённые внутриклеточные процессы → выделение секреторного материала (в нашем случае - определённых белков) во внеклеточную среду.

В таблице 2 представлены молекулярные посредники, которые, как предполагается, обеспечивают работу главных ветвей внутриклеточной сигнализации в секреторных клетках больших слюнных желез.

Независимо от того, действует ли VIP- и SP-сигнализация преимущественно на гемато-саливарный барьер или же одновременно и на секреторные клетки, очевидно, что нервная регуляция больших слюнных желез в конечном итоге реализуется по трём внутриклеточным сигнальным путям. В первом случае внутри секреторной клетки увеличивается содержание диацилглицерола, активатора протеин киназы С, и инозитол 1,4,5-трифосфата, который повышает уровень ионов Са 2+ в цитоплазме. Во втором - возрастает внутриклеточный уровень сАМР, а в третьем - концентрация сАМР наоборот снижается. В двух последних случаях происходит соответственно усиление или угнетение активности сАМР-зависимой протеин киназы. Эти три внутриклеточных сигнальных механизма на завершающем этапе приводят к экзоцитозу секреторных гранул, содержащих определённые белковые компоненты.

Общим обстоятельством для всех этих сигнальных путей является то, что участвующие в них клеточные рецепторы относятся к семейству семи-доменных трансмембранных белков, которые передают сигнал внутрь клетки через GTP-связывающие белки (G-белки).

Анализ научной литературы показывает, что в настоящее время отсутствует ясная картина о конкретных особенностях пула рецепторов на поверхности секреторных клеток слюнных желез человека, хотя и существуют многочисленные данные об изучении этих рецепторов в слюнных железах человека и разнообразных животных. Выяснение реального распределения нейромедиаторных рецепторов известных семейств, таких как М(1,2,3,4,5), α 1 (А,В,D), α 2 (А,В,С), β(1,2,3) и др., в определённых видах (серозных, мукозных и смешанных) секреторных клеток той или иной слюнной железы поможет понять более точно работу ключевого регуляторного звена «нейромедиатор → секреторная клетка → белковая секреция» в механизме контроля больших слюнных желез.

Резюмируя всё описанное выше, можно сказать, что существуют общие для всех людей анатомо-физиологические элементы управления белковым составом смешанной слюны. На рис. 3 представлена принципиальная схема психофизиологического механизма, регулирующего белковый состав смешанной слюны человека .

Определённые эмоции (психоэмоциональные состояния) приводят к специфической активации трёх центров вегетативного контроля слюнных желез. Из этих центров передаются нервные импульсы, управляющие формированием белковой секреции в секреторных клетках больших слюнных желёз. Возможно, что одновременно из тех же центров параллельно идут сигналы, которые модулируют белковый состав слюны с помощью изменения активности малых слюнных желез и проницаемости гемато-саливарного барьера.

Представленная нами в этой статье картина предполагаемой психофизиологической регуляции белкового состава смешанной слюны не является законченной. Остаются неясными многие вопросы. Несомненно, что данная область биологии нуждается в серьезном внимании и кропотливой исследовательской работе.

Заключение

К вопросам в области психофизиологической регуляции слюнных желез, которые требуют дальнейших исследований, можно, в частности, отнести:

  • Каков механизм, с помощью которого разные психоэмоциональные состояния воздействуют на активность различных вегетативных центров, регулирующих большие слюнные железы?
  • Имеется ли дифференциация активности в структуре тел центров вегетативной регуляции слюнных желез, которая распределяется по нескольким аксонам, или импульсы идут одним суммарным сигналом от каждого из этих центров?

    Регулируют ли вегетативные центры одинаково правую и левую слюнную железу в каждой из трёх пар больших слюнных желез или есть определённые различия?

    Какой вклад в формировании белкового состава смешанной слюны вносят: каждая из больших слюнных желез в отдельности; гемато-саливарный барьер; малые слюнные железы?

  • Как распределены разные типы рецепторов, участвующие в нервном контроле, на секреторных клетках различных слюнных желёз и секрецию каких белков регулируют эти рецепторы?
  • Какие биологические функции выполняют белки, секретируемые в слюну на фоне разных психоэмоциональных состояний (т.е. какие медико-биологические свойства приобретает слюна под действием различных эмоций)?

Перспективы . Как видно из представленных выше данных, психоэмоциональное состояние может достаточно сильно воздействовать на содержание в слюне целого спектра разных белковых веществ. Большинство этих белков контролируют определённые физиологические процессы. Если предположить, что, аналогично слюнным, и другие железы подвержены столь же сильному влиянию психоэмоциональных состояний (мы думаем, что это будет со временем доказано), то воздействие психической активности на биохимический фон (и как следствие, на физиологию) организма может оказаться достаточно масштабным.

В этой связи обращает на себя внимание тот факт, что при некоторых психических расстройствах (например, депрессивном синдроме) лечение соматических заболеваний традиционными медикаментами малоэффективно. Учёные, сделавшие эти наблюдения, пока не смогли дать ясного объяснения данному явлению . Результаты наших исследований, возможно, предоставляют реальную основу для понимания причин. Как мы показали ранее , при депрессивном синдроме кардинально меняется биохимическая среда (белковый состав) секреторных выделений из слюнных желёз, вследствие чего могут существенно меняться различные метаболические цепочки в организме. Соответственно, можно предположить, что действие лекарственных препаратов на таком фоне меняется по сравнению с ситуацией, когда психоэмоциональное состояние характеризуется нормальной активностью.

Полученные нами факты о психофизиологической регуляции слюнных желез позволяют предположить, что фундаментальная наука о человеке (психология, [психо]физиология, нейрофизиология, эндокринология, клеточная биология, биохимия ) и практическое здравоохранение (общая медицина и психиатрия ) могут получить новые ценные возможности при использовании методов биохимического анализа слюны.

Так в области фундаментальных исследований метод анализа белков слюны позволяет изучать, как психическая активность воздействует на:

    секреторные процессы (работу желёз) в организме;

    синтез белка в секреторных клетках;

    работу генома секреторных клеток .

В широком смысле описанный метод предоставляет возможности для исследования механизмов, с помощью которых осуществляется влияние со стороны различных психоэмоциональных состояний (нормализующих или дестабилизирующих) на функционирование разных физиологических систем .

Метод анализа слюны позволяет средствами биохимии изучать психическую активность в различных состояниях сознания и когнитивной деятельности . Учитывая, что в настоящее время психофизиология и нейрофизиология используют преимущественно биофизические методы, которые в определённом смысле обременительны для испытуемых людей, данный биохимический метод может значительно увеличить возможности исследования психической сферы человека.

Настоящий метод может быть в большой степени интересен как базовая технология для изучения влияния психоэмоциональных состояний на биохимические процессы в организме человека. Метод может быть использован как «полигон» для подготовки аналогичных исследований крови и других биологических сред человека.

В сфере здравоохранения данный метод может быть применен для разработки средств биохимической (объективной) оценки психологических особенностей личности, что представляет определённое значение для:

    общей медицины при необходимости учёта психофизиологического состояния пациента, что могло бы позволить организовать наиболее целесообразную терапию (как известно, на фоне разных психоэмоциональных состояний действие лекарств различается );

    психиатрии при диагностике психических расстройств (слюна отражает нарушения в психической сфере; следует отметить, что поиск биологических индикаторов психопатологий является актуальной медицинской проблемой).

Работа поддержана Региональным общественным фондом содействия отечественной медицине (грант № С-01-2003).

ЛИТЕРАТУРА

1. Lac G. Saliva assays in clinical and research biology // Pathol. Biol. (Paris) 2001 49:8 660-7.

2. Tabak L.A. A revolution in biomedical assessment: the development of salivary diagnostics // Dent. Educ. 2001 65:12 1335-9.

3. Lawrence H.P. Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health // J. Can. Dent. Assoc. 2002 68:3 170-4.

4. Nagler R.M., Hershkovich O., Lischinsky S., Diamond E., Reznick A.Z. Saliva analysis in the clinical setting: revisiting an underused diagnostic tool // J. Investig. Med. 2002 50:3 214-25.

5. Seifert G. Salivary glands and the organism-interrelations and correlating reactions // Laryngorhinootologie 1997 76:6 387-93.

6. Григорьев И.В., Уланова Е.А., Ладик Б.Б. Некоторые особенности белкового спектра смешанной слюны у пациентов с депрессивным синдромом // Клиническая лабораторная диагностика . 2002. № 1. С. 15-18.

7. Григорьев И.В., Николаева Л.В., Артамонов И.Д. Психоэмоциональное состояние человека влияет на белковый состав слюны // Биохимия . 2003. Т. 68. № 4. С. 501-503.

8. Бабаева А. Г., Шубникова Е. А. Структура, функция и адаптивный рост слюнных желез. М., Московский университет , 1979. 190 с.

9. Hajeer A.H., Balfour A.H., Mostratos A., Crosse B. Toxoplasma gondii: detection of antibodies in human saliva and serum // Parasite. Immunol. 1994. 16 (1): 43-50.

10. Brummer-Korvenkontio H., Lappalainen P., Reunala T., Palosuo T. Detection of mosquito saliva-specific IgE and IgG4 antibodies by immunoblotting // J. Allergy. Clin . Immunol . 1994. 93 (3): 551-555.

11. Покидова Н.В., Бабаян С.С., Журавлёва Т.П., Ермольева З.В. Химические и физико-химические свойства лизоцима человека // Антибиотики . 1974. 19 (8): 721-724.

12. Kirstila V., Tenovuo J., Ruuskanen O., Nikoskelainen J., Irjala K., Vilja N. Salivary defense factors and oral health in patients with common variable immunodeficiency // J. Clin. Immunol. 1994. 14 (4): 229-236.

13. Jensen J.L., Xu T., Lamkin M.S., Brodin P., Aars H., Berg T., Oppenheim F.G. Physiological regulation of the secretion of histatins and statherins in human parotid saliva // J. Dent. Res. 1994. 73 (12): 1811-1817.

14. Aguirre A., Testa-Weintraub L.A., Banderas J.A, Haraszthy G.G., Reddy-M.S., Levine M.J. Sialochemistry: a diagnostic tool?// Crit. Rev. Oral. Biol. Med . 1993. 4 (3-4): 343-350.

15. Wu A.M., Csako G., Herp A. Structure, biosynthesis, and function of salivary mucins // Mol. Cell Biochem. 1994. 137 (1): 39-55.

16. Scannapieco F.A., Torres G., Levine M.J. Salivary alpha-amylase: role in dental plaque and caries formation // Crit. Rev. Oral. Biol. Med. 1993. 4 (3-4): 301-307.

17. Vanden-Abbeele A., Courtois P., Pourtois M. The antiseptic role of saliva // Rev. Belge. Med. Dent. 1992. 47 (3): 52-58.

18. Сукманский О.И. Биологически активные вещества слюнных желез. Киев, Здоровье . 1991.

19. Perinpanayagam H.E., Van-Wuyckhuyse B.C., Ji Z.S., Tabak L.A. Characterization of low-molecular-weght peptides in human parotid saliva // J.Dent.Res. 1995. 74 (1):345-350.

20. Pikula D.L., Harris E.F., Dasiderio D.M., Fridland G.H., Lovelace J.L. Methionine enkephalin-like, substance P-like, and beta-endorphin-like immunoreactivity in human parotid saliva // Arch. Oral. Biol. 1992. 37 (9): 705-709.

21. Dawidson I., Blom M., Lundeberg T., Theodorsson E., Angmar-Mansson B. Neuropeptides in the saliva of healthy subjects // Life Sci. 1997 60:4-5 269-78

22. Shiba A., Shiba K.S., Suzuki K. Analysis of salivary proteins by thin layer sodium dodecylsulphate polyacrylamide gel electrophoresis // J. Oral. Rehabil. 1986. 13 (3): 263-271.

23. Oberg S.G., Izutsu K.T., Truelove E.L. Human parotid saliva protein composition: dependence on physiological factors // Am. J. Physiol. 1982. 242 (3): G231-236.

24. Rahim Z.H., Yaakob H.B. Electrophoretic detection of salivary alpha-amylase activity // J. Nihon. Univ. Sch. Dent. 1992. 34 (4): 273-277.

25. Schwartz S. S., Zhu W. X., Sreebny L. M. Sodium dodecil sulphate-polyacrylamide gel electrophoresis of human whole saliva // Arch. Oral. Biol. 1995. 40 (10): 949-958.

26. Salvolini E., Mazzanti L., Martarelli D., Di Giorgio R., Fratto G., Curatola G. Changes in the composition of human unstimulated whole saliva with age // Aging (Milano) 1999 11:2 119-22.

27. Banderas-Tarabay JA, Zacarias-D-Oleire I.G., Garduno-Estrada R., Aceves-Luna E., Gonzalez-Begne M. Electrophoretic analysis of whole saliva and prevalence of dental caries. A study in Mexican dental students // Arch. Med. Res. 2002 33:5 499-505.

28. Guinard J.X., Zoumas-Morse C., Walchak C. Relation between parotid saliva flow and composition and the perception of gustatory and trigeminal stimuli in foods // Physiol. Behav. 1997 31 63:1 109-18.

29. Kugler J., Hess M., Haake D. Secretion of salivary immunoglobulin A in relation to age, saliva flow, mood states, secretion of albumin, cortisol, and catecholamines in saliva // J. Clin. Immunol. 1992. 12 (1): 45-49.

30. Hayakawa H., Yamashita K., Ohwaki K., Sawa M., Noguchi T., Iwata K., Hayakawa T. Collagenase activity and tissue inhibitor of metalloproteinases-1 (TIMP-1) content in human whole saliva from clinically healthy and periodontally diseased subjects // J. Periodontal. Res. 1994. 29 (5): 305-308.

31. Gasior-Chrzan B., Falk E.S. Lysozyme and IgA concentrations in serum and saliva from psoriatic patients // Acta Derm. Venereol. 1992. 72 (2): 138-140.

32. Ino M., Ushiro K., Ino C., Yamashita T., Kumazawa T. Kinetics of epidermal growth factor in saliva // Acta Otolaryngol. Suppl. Stockh. 1993. 500: 126-130.

33. Bergler W., Petroianu G., Metzler R. Disminucion del factor de crecimiento epidermico en la saliva en pacientes con carcinoma de la orofaringe // Acta. Otorrinolaringol. Esp. 1992. 43 (3): 173-175.

34. Mackinnon L.T., Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining // Int. J. Sports. Med. 1994. 3: S179-183.

35. Hu Y., Ruan M., Wang Q. A study of parotid salivary proteins from caries-free and caries-active people by high performance liquid chromatography // Zhonghua Kou Qiang Yi Xue Za Zhi 1997 32:2 95-8.

36. Salvolini E., Di Giorgio R., Curatola A., Mazzanti L., Fratto G. Biochemical modifications of human whole saliva induced by pregnancy // Br. J. Obstet. Gynaecol. 1998 105:6 656-60.

37. Henskens Y.M., van-der-Weijden F.A., van-den-Keijbus P.A., Veerman E.C., Timmerman M.F., van-der-Velden U., Amerongen A.V. Effect of periodontal treatment on the protein composition of whole and parotid saliva // J. Periodontol. 1996. 67 (3): 205-212.

38. Rudney J.D. Does variability in salivary protein concentrations influence oral microbial ecology and oral health? // Crit. Rev. Oral. Biol. Med. 1995. 6 (4): 343-367.

39. Sabbadini E., Berczi I. The submandibular gland: a key organ in the neuro-immuno-regulatory network? // Neuroimmunomodulation 1995 2:4 184-202.

40. Павлов И.П. Двадцатилетний опыт объективного изучения высшей нервной деятельности (поведения) животных. С.-Петербург, 1923.

41. Gemba H., Teranaka A., Takemura K. Influences of emotion upon parotid secretion in human // Neurosci. Lett. 1996 28 211:3 159-62

42. Bergdahl M., Bergdahl J. Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression, and stress // J. Dent. Res. 2000 79:9 1652-8.

43. Doyle A., Hucklebridge F., Evans P., Clow A. Salivary monoamine oxidase A and B inhibitory activities correlate with stress // Life Sci. 1996 59:16 1357-62.

44. Smith-Hanrahan C. Salivary kallikrein output during the stress response to surgery // Can. J. Physiol. Pharmacol. 1997. 75 (4): 301-304.

45. Okumura T., Nakajima Y., Matsuoka M. et al. Study of salivary catecholamines using fully automated column-switching high-performance liquid chromatography // J. Chromatogr. Biomed. Appl. 1997. 694 (2): 305-316.

46. Kirschbaum C., Wust S., Hellhammer D. Consistent sex differences in cortisol responses to psychological stress // Psychosom. Med. 1992 54:6 648-57.

47. Лукаш А.И., Зайка В.Г., Милютина Н.П., Кучеренко А.О. интенсивность свободно-радикальных процессов и активность антиоксидантных ферментов в слюне и плазме человека при эмоциональном стрессе. Вопросы медицинской химии. 1999. 45:6. 503-513.

48. Martin R.B., Guthrie C.A. Pitts C.G. Emotional crying, depressed mood, and secretory immunoglobulin A // Behav. Med. 1993. 19 (3): 111-114.

49. Hucklebridge F., Lambert S., Clow A., Warburton D.M., Evans P.D., Sherwood N. Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood // Biol. Psychol. 2000. 53 (1): 25-35.

50. Evans P., Bristow M., Hucklebridge F., Clow A., Walters N. The relationship between secretory immunity, mood and life-events // Br.J.Clin.Psychol. 1993. 32 (Pt 2): 227-236.

51. Stephen B. P. Quantitative aspects of stress-induced immunomodulation. International Immunopharmacology , 2001, 1:3 :507-520.

52. Grander D.A., Weisz J.R., Kauneckis D. Neuroendocrine reactivity, internalizing behavior problems, and control-related cognitions in clinic-referred children and adolescents // J. Abnorm. Psychol. 1994. 103 (2): 267-276.

53. Kirkpatrick S.W., Campbell P.S., Wharry R.E. Robinson S.L. Salivary testosterone in children with and without learning disabilities // Physiol. Behav. - 1993. 53 (3): 583-586.

54. Davies R.H., Harris B., Thomas D.R., Cook N., Read G., Riad-Fahmy D. Salivary testosterone levels and major depressive illness in men // Br.J. Psychiatry. 1992. 161: 629-632.

55. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T 4 // Nature. 1970. 227: 680-685.

56. Kusakabe T., Matsuda H., Gono Y., Kawakami T., Kurihara K., Tsukuda M., Takenaka T. Distribution of VIP receptors in the human submandibular gland: an immunohistochemical study // Histol. Histopathol. 1998 13:2 373-8.

57. Matsuda H., Kusakabe T., Kawakami T., Nagahara T., Takenaka T., Tsukuda M. Neuropeptide-containing nerve fibres in the human parotid gland: a semiquantitative analysis using an antibody against protein gene product 9.5 // Histochem. J. 1997 29:539-44.

58. Kawaguchi M., Yamagishi H. Receptive systems for drugs in salivary gland cells // Nippon Yakurigaku Zasshi 1995 105:5 295-303.

59. Dawidson I., Blom M., Lundeberg T., Theodorsson E., Angmar-Mansson B. Neuropeptides in the saliva of healthy subjects // Life Sci. 1997 60:4-5 269-78.

60. Beck-Sickinger A.G. Structural characterization and binding sites of G-protein-coupled receptors // DDT, V. 1, № 12, P. 502-512.

61. Уланова Е.А., Григорьев И.В., Новикова И.А. Гемато-саливарные механизмы регуляции в ревматоидном артрите. Терапевтический архив. 2001 73:11 92-4.

62. Won S., Kho H., Kim Y., Chung S., Lee S. Analysis of residual saliva and minor salivary gland secretions // Arch. Oral. Biol. 2001 46:619-24.

63. Wang P.S., Bohn R.L., Knight E., Glynn R.J., Mogun H., Avorn J. Noncompliance with antihypertensive medications: the impact of depressive symptoms and psychosocial factors // J. Gen. Intern. Med. 2002 17:7 504-11.

Важное значение имеет функциональная активность самих слюнных желез .

Её снижение может иметь ряд серьёзных отрицательных последствий:

1) Снижается степень омывания зубов слюной,

2) Ухудшается самоочищение полости рта,

3) Уменьшается выделение минеральных веществ со слюной,
что отрицательно влияет на гомеостаз в полости рта.

При недостатке витамина А – снижение секреции слюнных желез (наряду с ксерофтальмией, сухостью кожи).

1) Пищеварительная и секреторная

Процесс пищеварения начинается с ротовой полости, где пища анализируется по вкусовому составу, измельчается и подготавливается к дальнейшей транспортировке и химической обработке. Важную роль в этом играет слюна. Слюна обволакивает пищу и смешивается с ней при жевании, что делает пищевой комок мягким и скользким, пригодным для проглатывания. Кроме того, слюна в полости рта выполняет функцию пищеварительного сока. За счет содержащихся в слюне амилазы, мальтазы обеспечиваются начальные этапы гидролиза углеводов. Присутствует небольшое количестворазнообразных пептидаз . Хотя пища находится в ротовой полости непродолжительное время (15-30 сек), но действие этих ферментов слюны продолжается некоторое время еще в желудке.

Слюна растворяет пищу и делает ее доступной для вкусовых рецепторов и этим влияет на аппетит, что имеет существенное значение для дальнейших этапов пищеварения, в частности, для выделения желудочного и кишечного соков. Но значение слюны этим не исчерпывается.

Нарушение секреторной функции слюнных желез сопровождается изменением всех других функций слюны.

Патология секреции слюнных желез проявляется либо увеличением количества продуцируемой слюны (гиперсиалия, птиализм, сиалорея), либо его уменьшением (гипосиалия, олигоптиализм), вплоть до полного прекращения слюноотделения (асиалия), а также качественными изменениями состава слюны.

Причиной гиперсиалии является рефлекторная или непосредственная стимуляция центров слюноотделения. Рефлекторная стимуляция слюноотделения имеет место при избыточном раздражении М-холинорецепторов полости рта, желудка и кишечника. При заболеваниях зубов, гингивитах, стоматитах любого происхождения избыток афферентных импульсов с рецепторов полости рта по чувствительным волокнам язычного (ветвь тройничного нерва), языкоглоточного нервов, барабанной струны (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) достигает слюноотделительного центра , расположенного в продолговатом мозге , и возбуждает его.

Особенностью слюнных желез является то, что они имеют двойную иннервацию, которая вызывает не антагонистическое, а синергическое действие. Стимуляция слюноотделения возможна при активации как симпатической, так и парасимпатической систем. При симпатическом раздражении выделяется густая, вязкая слюна в небольших объемах. При некоторых эмоциональных состояниях, сопровождающихся активацией симпатической системы, в частности при вспышках гнева, наблюдается усиление секреции слюны. Это так называемая психогенная секреция. И все же парасимпатическая система играет главную роль в стимуляции секреции слюнных желез. Парасимпатическая стимуляция слюнных желез приводит к увеличению объема выделяемой слюны. Вот почему введение холиномиметиков (пилокарпин, прозерин), раздражение барабанной струны (chordae tympani) сопровождаются сильным слюноотделением.

Гиперсаливация наблюдается и в тех случаях, когда раздражаются центральные структуры головного мозга, имеющие отношение к регуляции слюноотделения. Это, в первую очередь, слюноотделительные центры продолговатого мозга, гипоталамус, амигдалярный комплекс, зона сильвиевой борозды коры головного мозга, область обонятельного мозга.

Повышенная секреция слюны может наблюдаться также у больных с выраженным гиперэстрогенизмом, с токсикозом беременности. Повышение секреции слюны вызывается некоторыми лекарственными веществами – антихолинэстеразными препаратами, никотином, препаратами, содержащими йод.

Симптоматическая гиперсаливация развивается при отравлениях свинцом, ртутью, а также барбитуратами, боевыми или бытовыми веществами, оказывающими мускарино- и никотиномиметическое действие, грибом мухомором, некоторыми ядовитыми растениями (плющ, табак, аконит джунгарский, белокрыльник болотный).

У некоторых больных усиленная саливация проявляется в период адаптации к съемным пластиночным протезам.

В крайне редких случаях встречаются врожденные формы сиалореи. К их числу относятся синдром Глязера, когда на фоне атипичной невралгии лицевого нерва наблюдаются слюно- и слезотечение, насморк; синдром Крея-Леви, для которого характерна гиперсекреция слюны, слизи, желудочного сока, расстройство обмена хлоридов и кальция.

Истинную гиперсиалию необходимо отличать от ложной. Так, больные с бульбарным параличом могут предъявлять жалобы на повышенное выделение слюны. Эти жалобы зависят от плохого глотания, на самом деле выделяется нормальное количество слюны. Медленное заглатывание слюны наблюдается при паркинсонизме, что усугубляет истинную гиперсаливацию.

При гиперсаливации количество отделяемой слюны у взрослого человека может достичь 10 литров и более в сутки вместо 0,5-2,0 литров. Длительно удерживающаяся гиперсаливация приводит к значительным изменениям водного обмена, потере солей, особенно калия, а также к гипопротеинемии в связи с потерей большого количества белка, содержащегося в слюне. При длительной гиперсаливации нередко расстраивается желудочное пищеварение, так как увеличение секреции нейтральной слюны может привести к нейтрализации желудочного сока и понижению его переваривающей способности. При выраженной гиперсаливации вся слюна не заглатывается, а вытекает наружу, вызывая мацерацию кожи и воспаление слизистой губ. Вместе с тем в ряде случаев гиперсаливация развивается как защитно-приспособительная реакция. Со слюной из организма могут удаляться из крови различные токсические вещества экзо- и эндогенного происхождения. Например, у рабочих, занятых на вредных производствах (лакокрасочные, гальванические цеха), у больных с отравлениями, недостаточностью почек.

Однако значительно чаще врачу приходится наблюдать больных, у которых развивается гипосиалия. Понижение слюноотделения имеет место прежде всего при аномалиях развития или поражении самих слюнных желез. К счастью, пороки развития, врожденное отсутствие слюнных желез встречаются крайне редко, но эти случаи особенно неблагоприятны. Что касается приобретенной патологии слюнных желез, то она может иметь разнообразный характер. Это и травматические повреждения слюнных желез, и дистрофические изменения паренхимы желез невоспалительного генеза, так называемые сиалозы. Сиалозы могут быть первичными и вторичными.

Первичные сиалозы – это дистрофические нарушения слюнных желез, при которых нельзя найти предсуществующую патологию. Наиболее характерным представителем первичного сиалоза является болезнь Шегрена. Если симптоматика, характерная для болезни Шегрена, появляется на фоне какого-то общего заболевания организма, например, ревматоидного артрита, то тогда говорят о синдроме Шегрена. Болезнь Шегрена преимущественно бывает у женщин старше 45 лет. Этиология и патогенез этой патологии мало изучены. Полагают, что заболевание носит аутоиммунный характер. Аутоиммунный процесс приводит преимущественно к гибели, деструкции клеток паренхимы слюнных желез. Одним из основных проявлений болезни (синдрома) Шегрена является резкое снижение секреции слюны, сочетающееся с сухостью слизистых глаз.

Вторичные сиалозы – это дистрофические нарушения паренхимы слюнных желез, возникающие на фоне какой-то имеющейся в организме патологии. Это может быть инфекция – туберкулез, сифилис, либо аутоиммунное заболевание – ревматизм, системная красная волчанка, склеродермия, либо эндокринная патология – сахарный диабет или заболевание опухолевой природы – лейкоз, лимфогрануломатоз.

Правда, на ранних стадиях развития сиалозов возможна гиперсаливация по симпатическому типу, когда наблюдается усиленное отделение вязкой, густой и тягучей слюны. Симпатическая гиперстимуляция быстро приводит к истощению секретообразования, и в дальнейшем наблюдается гипосаливация.

Но наиболее частой патологией слюнных желез является их воспалительное поражение – сиаладениты . Они могут быть острыми, хроническими, различной этиологии: вирусной, бактериальной, микотической, могут затрагивать одну, несколько желез. Они могут иметь первичный характер или развиваться вторично вследствие какого-то другого патологического процесса, развивающегося первоначально в железах и вызывающего их альтерацию и нарушение функций. Угнетение секреторной функции железы у больных сиаладенитом вызвано разрушением ее паренхимы, поэтому при этой форме патологии выраженное угнетение слюноотделения развивается только в поздней стадии или в период обострения заболевания при ее хроническом течении.

Резкое снижение саливации имеет место и при сиалолитиазе, слюнокаменной болезни , когда наступает частичная или полная обтурация протоков нескольких слюнных желез.

И, наконец, слюнные железы могут поражаться опухолевым процессом.

Таким образом, уменьшение секреции слюны при различных формах патологии слюнных желез может быть результатом уменьшения образования секрета самой железой вследствие атрофических или дистрофических изменений в железе (сиаладениты, сиалозы, опухоли слюнных желез), либо нарушение выведения слюны при обструкции протоков (сиалолитиаз, опухоли слюнных желез), либо повреждения секреторных нервов слюнных желез.

Нарушение секреторной функции слюнных желез отражается и на их инкреторной функции . Из слюнных желез со слюной выделяется ряд гормональных веществ, из которых наибольший интерес представляют фактор роста нервов, эпидермальный фактор роста, паротин-S . Фактор роста нервов , в частности, необходим для нормального эмбрионального развития симпатических нервов. Он является также сильным эндогенным противовоспалительным агентом. Его активность в 1000 раз выше, чем у индометацина, наиболее активного нестероидного противовоспалительного препарата. Фактор роста нервов оказывает влияние на процессы гиперплазии и гипертрофии в самих слюнных железах.

Эпидермальный фактор роста необходим для регенерации эпидермиса и дермы, он участвует в регенерации клеток слизистой гастродуоденальной области, печени. Паротин-S снижает уровень кальция в крови и способствует росту и обызвествлению зубов, костной и хрящевой ткани. Паротину также приписывается инсулиноподобное действие – снижение уровня глюкозы в крови. У больных с сахарным диабетом довольно часто имеет место гипертрофия слюнных желез, которая рассматривается как компенсаторная реакция.

2) Кроме пищеварительной функции слюны, обеспечивающей переваривание углеводов в полости рта, существует три главных функции слюны и слюнных желез в процессах минерализации, деминерализации и реминерализации эмали зубов:

1) Минерализующая функция: влияниена проницаемость эмали , минерализация зубов, "созревание" эмали после прорезывания, поддержание оптимального состава эмали, его восстановление после повреждения и болезней.

2) Защитная функция: ограждение органов полости рта от вредного воздействия факторов внешней среды;

3) Очищающая роль: постоянное механическое и химическое очищение полости рта от остатков пищи, микрофлоры, детрита и т.д.

3) Кроме того, слюна выполняет дополнительные функции:

4) ? см п.1 Участие в переваривании углеводов (крахмала) благодаря наличию амилазы

5) Влияние на свертываемость крови .

6) Антибактериальная функция слюны обеспечивается лизоцимом, лактопероксидазой и другими веществами белковой природы. Они обладают бактериостатическим и бактерицидным действием. Источниками этих веществ являются слюнные железы и десневая жидкость (ПМЯЛ).

Рассмотрим подробнее некоторые из этих функций.

СВЕРТЫВАЮЩАЯ И ФИБРИНОЛИТИЧЕСКАЯ АКТИВНОСТЬ СЛЮНЫ

очень важна в физиологии и патологии полости рта.

1) Компоненты свертывающей системы слюны : тромбопластин, соединения, входящие в протромбиновый комплекс (протромбин, фактор V, VII, X), а также ингибиторы фибринолиза.

2) Компоненты антисвертывающей системы слюны : антитромбиновая субстанция, фермент фибриназа, фибринолитические соединения (активатор и проактиватор плазминогена, плазмин (фибринолизин)).

При болезнях пародонта происходит увеличение фибиринолитической активности слюны . Это один из механизмов, обеспечивающих резистентность омываемых тканей и способствующих очищению от слущенных эпителиальных клеток, фибринозных наслоений и т.д.

В целом, соединения ротового секрета с гемокоагулирующей и фибринолитической активностью важны для следующих процессов:

1) обеспечение местного гомеостаза,

2) иммунологические реакции,

3) очищение полости рта от пластов неслущенного эпителия;

4) фибринолитические ферменты повышают устойчивость тканей к гипоксии;

5) фибринолитическая активность слюны предупреждает нарушения микроциркуляции в тканях пародонта и предотвращает развитие тромбозов;

6) локальный фибринолиз связан с механизмами транскапиллярного обмена.

Минерализующая функция слюны

1). Для ее выполнения необходимо наличие одного очень важного свойства слюны. Дело в том, что слюна является структурированной коллоидной системой , т.к. в ее состав входят муцин и другие поверхностно-активные вещества. При кариесе зубов и после приема углеводов нарушается или исчезает кристаллическая структура ротовой жидкости, снижается минерализующий потенциал слюны. Следовательно, нарушение кристаллического состояния слюны сопровождается снижением ее минерализующих свойств

2). Минерализующая функция ротовой жидкости осуществляется благодаря ее пресыщенности ионами кальция и гидрофосфата . Ионы, обусловливающие минерализующую функцию слюны, входят в состав коллоидных мицелл фосфата кальция, что обеспечивает их устойчивость в пресыщенном состоянии и создает благоприятные условия для проникновения реминерализующих компонентов в эмаль зубов. Поддержание пресыщенности ротовой жидкости ионами Са 2+ и гидрофосфата осуществляется благодаря образованию связей Са 2+ с белками - ингибиторами осаждения.

3). Поскольку рН слюны является главным естественным регулятором гомео­стаза в полости рта, то изменение рН должно оказывать непосредственное влияние на устойчивость коллоидных мицелл. \Минерализующая функция слюны усиливается при подщелачивании и резко падает при снижении рН .

1. При подкислении слюны в ней повышается концентрация ионов Н 2 РО 4 ˉ (дигидрофосфаты). Эти ионы потенциал-определяющие в мицеллах. Са 3 (РО 4) 2 , СаНРО 4 , Са(Н 2 РО 4) 2 (перечислены в порядке увеличения растворимости).

2. Подщелачивание ротовой жидкости приводит к повышению содержания фосфат-ионов РО 4 3– , что оказывает влияние на состав мицелл, в которых образуется трудно растворимое соединение фосфат кальция - Са 3 (РО 4) 2 . Таким образом, подщелачивание ротовой жидкости способствует нарушению процесса мицеллообразования и может быть причиной отложения зубного камня. рН слюны у лиц с зубным камнем повышен.

4). Минерализующая функция ротовой жидкости во многом зависит от устойчивости коллоидных мицелл. Уменьшение заряда гранул мицелл и толщины гидратной оболочки ведет к снижению устойчивости коллоидных частиц. Изменение состава мицелл, приводящее к снижению их устойчивости, может наблюдаться и при значительном повышении концентрации электролитных компонентов в слюне, в том числе доминирующих катионов - Na + и K + . При этом возможен переход мицеллы в изоэлектрическое состояние .

5). Очаги деминерализации появляются на эмали зубов уже в течение 23 дней в процессе воздействия длительной местной углеводной нагрузки у лиц, не проводивших гигиенического ухода за полостью рта. Это объясняется нарушением структурных свойств слюны в связи с переходом мицелл в изоэлектрическое состояние и снижением их устойчивости.

Таким образом, колебания рН и концентрации электролитных компонентов слюны, выходящие за пределы физиологических норм, должны приводить
1) либо к снижению устойчивости мицелл и их осаждению, 2) либо к нарушению процесса мицеллообразования. При этом теряется способность ротовой жидкости поддерживать ионы Са 2+ и гидрофосфата в пересыщенном состоянии, что и приводит к ее структурным изменениям и снижению минерализующего потенциала.

рН ротовой жидкости (смешанной слюны – секрета слюнных желез, десневой жидкости и тканевой жидкости, диффундирующей через слизистую оболочку полости рта) у здоровых людей в среднем 7,1 (6,8-7,5). Нейтральной реакцией считается рН=7, смешанная слюна является нейтральной или слабощелочной. Такая реакция слюны чрезвычайно важна для обеспечения оптимального состояния зубов и мягких тканей полости рта.

Более узкие границы значений рН слюны 7,25+ 0,02.

При рН 6,0 и ниже наблюдается видимый деминерализующий эффект эмали . Общая кислая реакция слюны является очень редким исключением. Понижение рН обычно носит локальный характер: более низкие значения рН наблюдаются не в слюне, а в зубном налёте, осадке слюны, кариозных полостях и др.

Слюна (лат. saliva) - прозрачная бесцветная жидкость, отделяемая в полость рта секрет слюнных желёз. Слюна смачивает полость рта, способствуя артикуляции, обеспечивает восприятие вкусовых ощущений, смазывает пережёванную пищу. Кроме того, слюна очищает полость рта, обладает бактерицидным действием, предохраняет от повреждения зубы. Под действием ферментов слюны в ротовой полости начинается переваривание углеводов.

Состав слюны

Слюна обладает pH от 5,6 до 7,6. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов, лизоцим и другие ферменты, некоторые витамины. Основными органическими веществами слюны являются белки, синтезируемые в слюнных железах (некоторые ферменты, гликопротеиды, муцины, иммуноглобулины класса А) и вне их. Часть белков слюны имеет сывороточное происхождение (некоторые ферменты, альбумины, β-липопротеиды, иммуноглобулины классов G и М и др.).

У большинства людей в слюне содержатся группоспецифические антигены, соответствующие антигенам крови. Способность секретировать в составе слюны группоспецифические вещества передается по наследству. В слюне обнаружены специфические белки - саливопротеин, способствующий отложению фосфорокальциевых соединений на зубах, и фосфопротеин - кальцийсвязывающий белок с высоким сродством к гидроксиапатиту, участвующий в образовании зубного камня и зубного налета. Основными ферментами слюны являются амилаза (α-амилаза), осуществляющая гидролиз полисахаридов до ди- и моносахаридов, и α-гликозидаза, или мальтоза, расщепляющая дисахариды мальтозу и сахарозу. В слюне обнаружены также протеиназы, липазы, фосфатазы, лизоцим и др.

В смешанной слюне в небольших количествах присутствует холестерин и его эфиры, свободные жирные кислоты, глицерофосфолипиды, гормоны (кортизол, эстрогены, прогестерон, тестостерон), различные витамины и другие вещества. Минеральные вещества, входящие в состав слюны, представлены анионами хлоридов, бромидов, фторидов, йодидов, фосфатов, бикарбонатов, катионами натрия, калия, кальция, магния, железа, меди, стронция и др. Смачивая и размягчая твердую пищу, слюна обеспечивает формирование пищевого комка и облегчает проглатывание пищи. После пропитывания слюной пища уже в полости рта подвергается первоначальной химической обработке, в процессе которой углеводы частично гидролизуются α-амилазой до декстринов и мальтозы.

Растворение в слюне химических веществ, входящих в состав пищи, способствует восприятию вкуса вкусовым анализатором. Слюна обладает защитной функцией, очищая зубы и слизистую оболочку полости рта от бактерий и продуктов их метаболизма, остатков пищи, детрита. Защитную роль играют также содержащиеся в слюне иммуноглобулины и лизоцим. В результате секреторной деятельности больших и малых слюнных желез увлажняется слизистая оболочка рта, что является необходимым условием для осуществления двустороннего транспорта химических веществ между слизистой оболочкой рта и слюной. Количество, химический состав и свойства слюны меняются в зависимости от характера возбудителя секреции (например, вида принимаемой пищи), скорости секреции. Так, при употреблении в пищу печенья, конфет в смешанной слюне временно возрастает уровень глюкозы и лактата; при стимуляции слюноотделения в слюне резко увеличивается концентрация натрия и бикарбонатов, не меняется или несколько снижается уровень калия и йода, в слюне курильщиков в несколько раз больше роданидов, чем у некурящих.

Химический состав слюны подвержен суточным колебаниям, он также зависит от возраста (у пожилых людей, например, значительно повышается количество кальция, что имеет значение для образования зубного и слюнного камня). Изменения в составе слюны могут быть связаны с приемом лекарственных веществ и интоксикациями. Состав слюны меняется также при ряде патологических состояний и заболеваний. Так, при обезвоживании организма происходит резкое снижение слюноотделения; при сахарном диабете в слюне увеличивается количество глюкозы; при уремии в слюне значительно возрастает содержание остаточного азота. Уменьшение слюноотделения и изменения в составе слюны приводят к нарушениям пищеварения, заболеваниям зубов.

Слюна как основной источник поступления в эмаль зуба кальция, фосфора и других минеральных элементов влияет на ее физические и химические свойства, в т.ч. на резистентность к кариесу. При резком и длительном ограничении секреции слюны, например при ксеростомии, наблюдается интенсивное развитие кариеса зубов, кариесогенную ситуацию создает низкая скорость секреции слюны во время сна. При Пародонтозе в слюне может снижаться содержание лизоцима, ингибиторов протеиназ, увеличиваться активность системы протеолитических ферментов, щелочной и кислой фосфатаз, изменяться содержание иммуноглобулинов, что приводит к усугублению патологических явлений в пародонте.

Секреция слюны

В норме у взрослого человека за сутки выделяется до 2 л слюны. Скорость секреции слюны неравномерна: она минимальна во время сна (менее 0,05 мл в минуту), при бодрствовании вне приема пищи составляет около 0,5 мл в минуту, при стимуляции слюноотделения секреция слюны увеличивается до 2,3 мл в минуту. В полости рта секрет, выделяемый каждой из желез, смешивается. Смешанная слюна, или так называемая ротовая жидкость, отличается от секрета, выделяющегося непосредственно из протоков желез, присутствием постоянной микрофлоры, в состав которой входят бактерии, грибки, спирохеты и др., и продуктов их метаболизма, а также спущенных эпителиальных клеток и слюнных телец (лейкоцитов, мигрировавших в полость рта главным образом через десну). Кроме того, в смешанной слюне могут присутствовать Мокрота, выделения из полости носа, эритроциты и др.

Смешанная слюна представляет собой вязкую (в связи с присутствием гликопротеидов) жидкость с удельным весом от 1001 до 1017. Некоторая мутность слюны вызвана наличием клеточных элементов. Колебания рН слюны зависят от гигиенического состояния полости рта, характера пищи, скорости секреции (при низкой скорости секреции рН слюны сдвигается в кислую сторону, при стимуляции слюноотделения - в щелочную).

Слюноотделение находится под контролем вегетативной нервной системы. Центры слюноотделения располагаются в продолговатом мозге. Стимуляция парасимпатических окончаний вызывает образование большого количества слюны с низким содержанием белка. Наоборот, симпатическая стимуляция приводит к секреции малого количества вязкой слюны. Отделение слюны уменьшается при стрессе, испуге или обезвоживании и практически прекращается во время сна и наркоза. Усиление выделения слюны происходит при действии обонятельных и вкусовых стимулов, а также вследствие механического раздражения крупными частицами пищи и при жевании.