Лабораторные исследования при заболеваниях. Лабораторные исследования при заболеваниях легких. Лабораторные методы исследования при инфекционных заболеваниях

Клинический анализ крови (общий анализ крови) — это лабораторное исследование, позволяющее оценить качественный и количественный состав крови. Данное исследование включает в себя определение следующих показателей:

  • количество и качество эритроцитов,
  • цветовой показатель,
  • величина гематокрита,
  • содержание гемоглобина,
  • скорость оседания эритроцитов,
  • количество тромбоцитов,
  • количество лейкоцитов, а также процентное соотношение различных видов лейкоцитов в периферической крови.

Подробно о клиническом анализе крови можно прочитать в этой статье .

Пункционная диагностика

Морфологический состав крови не всегда отражает изменения, возникающие в кроветворных органах. Поэтому с целью верификации диагноза и количественной оценки функции костно-мозгового кроветворения у гематологических больных, а также с целью контроля за эффективностью лечения проводят морфологическое исследование костного мозга.

Для этого используют 2 метода:

  1. Стернальная пункция — метод, предложенный в 1927 году М.И. Аринкиным, технически более прост, не требует присутствия хирурга и может выполняться в амбулаторных условиях.
  2. Трепанобиопсия гребешка подвздошной кости — метод является более точным, поскольку получаемые срезы костного мозга полностью сохраняют архитектонику органа, позволяют оценить диффузный или очаговый характер изменений в нем, исследовать соотношение кроветворной и жировой тканей, выявить атипичные клетки.

Основными показаниями для исследования костного мозга являются алейкемические формы лейкозов, эритремия, миелофиброз и другие миелопролиферативные и лимфопролиферативные заболевания, гипо- и апластические анемии.

В настоящее время для детального анализа гемопоэза перспективным направлением в теоретическом и практическом плане является метод клонирования клеточных кроветворных популяций. Этот метод позволяет клонировать различные клеточные кроветворные популяции, прогнозировать течение заболевания, осуществлять контроль за эффективностью проводимой терапии.

Клональные методы широко используются при аутологичной и аллогенной трансплантации костного мозга человека для оценки качества донорского трансплантата и контроля за эффективностью его приживания у реципиента.

Исследование системы гемостаза

Система гемостаза представляет собой сложную многофакторную биологическую систему, основными функциями которой являются остановка кровотечения путем поддержания целостности кровеносных сосудов и достаточно быстрого их тромбирования при повреждениях и сохранение жидкого состояния крови.

Эти функции обеспечиваются следующими системами гемостаза:

  • стенками кровеносных сосудов;
  • форменными элементами крови;
  • многочисленными плазменными системами, включающими свертывающую, противосвертывающую и другие.

При повреждении сосудов запускаются два основных механизма остановки кровотечения:

  • первичный, или сосудисто-тромбоцитарный, гемостаз, обусловленный спазмом сосудов и их механической закупоркой агрегатами тромбоцитов с образованием "белого тромба";
  • вторичный, или коагуляционный, гемостаз, протекающий с использованием многочисленных факторов свертывания крови и обеспечивающий плотную закупорку поврежденных сосудов фибриновым тромбом (красным кровяным сгустком).

Методы исследования сосудисто-тромбоцитарного гемостаза

Наиболее распространенными являются следующие показатели и методы их определения:

Резистентность капилляров. Из методов оценки ломкости капилляров чаще всего используется манжеточная проба Румпель — Лееде — Кончаловского. Через 5 минут после наложения манжеты для измерения АД на плечо и создания в ней давления, равного 100 мм рт. ст., ниже манжеты появляется определенное количество петехий. Нормой является образование в этой зоне менее 10 петехий. При повышении проницаемости сосудов или тромбоцитопении число петехий в этой зоне превышает 10 (положительная проба).

Время кровотечения. Данный тест основан на изучении длительности кровотечения из участка прокола кожи. Нормативные показатели длительности кровотечения при определении по методу Дьюке — не выше 4 минут. Увеличение длительности кровотечения наблюдается при тромбоцитопениях или/и тромбоцитопатиях.

Определение количества тромбоцитов. Число тромбоцитов у здорового человека в среднем составляет 250 тыс. (180—360 тыс.) в 1 мкл крови. В настоящее время для определения числа тромбоцитов существует несколько лабораторных технологий.

Ретракция сгустка крови. Для ее оценки чаще всего используют непрямой метод: измеряют объем сыворотки, выделяемой из сгустка крови при ее ретракции по отношению к объему плазмы в исследуемой крови. В норме показатель равен 40 — 95%. Его уменьшение наблюдается при тромбоцитопениях.

Определение ретенции (адгезивности) тромбоцитов. Чаще используется метод, основанный на подсчете числа тромбоцитов в венозной крови до и после ее пропускания с определенной скоростью через стандартную колонку со стеклянными шариками. У здоровых людей индекс ретенции составляет 20 — 55%. Уменьшение показателя наблюдается при нарушении адгезии тромбоцитов у больных с врожденными тромбоцитопатиями.

Определение агрегации тромбоцитов. Наиболее интегральную характеристику агрегационной способности тромбоцитов можно получить при спектрофотометрической или фотометрической количественной регистрации процесса агрегации с помощью агрегографа. В основе метода лежит графическая регистрация изменения оптической плотности тромбоцитарной плазмы при перемешивании ее со стимуляторами агрегации. В качестве стимуляторов можно использовать АДФ, коллаген, бычий фибриноген или ристомицин.

Коагуляционный гемостаз

Процесс свертывания крови принято условно разделять на две основные фазы:

  1. фаза активации — многоступенчатый этап свертывания, который завершается активацией протромбина (фактор II) тромбокиназой c превращением его в активный фермент тромбин (фактор IIa);
  2. фаза коагуляции — конечный этап свертывания, в результате которого под влиянием тромбина фибриноген (фактор I) превращается в фибрин.

Для исследования процессов гемокоагуляции используются следующие показатели:

  • время свертывания крови,
  • активированное время рекальцификации плазмы (норма с хлоридом кальция 60 — 120 с, с коалином 50 — 70 с),
  • активированное частичное тромбопластиновое время (АЧТВ ) (норма 35 — 50 с),
  • протромбиновое время (ПТВ ) (норма: 12 — 18 с),
  • тромбиновое время (норма 15 — 18 с),
  • протромбиновый индекс (ПТИ ) (норма 90 — 100%),
  • аутокоагуляционный тест,
  • тромбоэластографию.

Преимуществом среди этих методов обладают три теста: ПТИ, АЧТВ и международное нормализованное отношение (МНО ), так как они позволяют судить не только о состоянии всей свертывающей системы крови, но и недостаточности отдельных факторов.

ПТИ (%) = Стандартное ПТВ / ПТВ у обследуемого пациента

МНО - показатель, который рассчитывается при определении ПТВ. Показатель МНО был введён в клиническую практику, чтобы стандартизировать результаты теста ПТВ, поскольку результаты ПТВ варьируют в зависимости от типа реагента (тромбопластина), используемого в разных лабораториях.

МНО = ПТВ пациента / ПТВ контрольной пробы

Определение МНО гарантирует возможность сравнения результатов при определении ПТВ, обеспечивая точный контроль терапии непрямыми антикоагулянтами. Рекомендуются два уровня интенсивности лечения непрямыми антикоагулянтами: менее интенсивный — показатель МНО равен 1,5 — 2,0 и более интенсивный — МНО равен 2,2 — 3,5.

При исследовании свертывающей системы крови важное значение имеет определение содержания фибриногена (норма 2 — 4 г/л). В патологии этот показатель может уменьшаться (ДВС-синдром, острый фибринолиз, тяжелое поражение печени) или увеличиваться (острые и хронические воспалительные заболевания, тромбозы и тромбоэмболии). Большое значение имеет также определение высокомолекулярных производных фибриногена, растворимых фибрин-мономерных комплексов, продуктов деградации фибрина.

В условиях физиологической нормы ограничение процессов плазмокоагуляции осуществляют антикоагулянты, которые подразделяются на две группы:

  1. первичные, постоянно содержащиеся в крови — антитромбин III, гепарин, протеин С, α 2 -макроглобулин и др.;
  2. вторичные, образующиеся в процессе свертывания и фибринолиза.

Среди этих факторов важнейшим является антитромбин III, на долю которого приходится 3/4 активности всех физиологических ингибиторов коагуляции. Дефицит этого фактора приводит к тяжелым тромботическим состояниям.

В крови даже при отсутствии повреждения сосудов постоянно происходит образование небольшого количества фибрина, расщепление и удаление которого осуществляет система фибринолиза. Основными методами исследования фибринолиза являются:

  • исследование времени и степени лизиса сгустков крови или эуглобулиновой фракции плазмы (норма 3-5 ч, с коалином - 4-10 мин);
  • определение концентрации плазминогена, его активаторов и ингибиторов;
  • выявление растворимых фибринмономерных комплексов и продуктов деградации фибриногена/фибрина.

Дополнительные методы исследования крови и мочи

При некоторых гематологических заболеваниях в крови можно определить аномальные белки — парапротеины. Они относятся к группе иммуноглобулинов, но отличаются от них по своим свойствам.

При миеломной болезни на электрофореграмме определяется гомогенная и интенсивная полоса М в области γ-, β- или (реже) α 2 -глобулиновых фракций. При болезни Вальденстрема пик аномальных макроглобулинов располагается в области между β- и γ-глобулиновыми фракциями. Но наиболее информативным методом для раннего выявления аномальных парапротеинов является иммуноэлектрофорез. У 60% больных с миеломной болезнью в моче, особенно на ранних стадиях, можно выявить низкомолекулярный протеин — белок Бенс-Джонса.

Ряд гематологических заболеваний характеризуется изменением осмотической резистентности эритроцитов. Метод основан на количественном определении степени гемолиза в гипотонических растворах хлорида натрия различной концентрации: от 0,1 до 1%. Понижение осмотической резистентности встречается при микросфероцитарной и аутоиммунной гемолитических анемиях, а повышение — при механической желтухе и талассемии.

Лабораторные методы исследования ревматических заболеваний проводятся для определения степени активности воспалительного процесса, выявления системности поражений, а также для оценки эффективности проводимой терапии.

1. Общеклинические методы исследования ревматических заболеваний.

Клинигеский анализ крови проводится с обязательным подсчетом ретикулоцитов и тромбоцитов.

Наиболее часто при ревматических заболеваниях отмечается анемия, обусловленная хроническим воспалением. Она характеризуется умеренным снижением количества эритроцитов, содержания железа в сыворотке крови и насыщения трансферрина железом при одновременном повышении общей железосвязывающей способности сыворотки крови, высоким уровнем ферритина и является нормо- или гипохромной, нормо- или микроцитарной. Наиболее часто этот тип анемии имеет место при РА, причем выраженность ее при этом заболевании обычно соответствует тяжести воспаления.

Значительно реже развивается железодефицитная и гемолитическая анемия. Развитие железодефицитной анемии при ревматических заболеваниях чаще связано с желудочно-кишечным кровотечением. Такая анемия может быть также обусловлена проводимой терапией или обильными месячными. Типичными признаками железодефицитной анемии являются гипохромия эритроцитов, микроцитоз, высокая железосвязывающая способность сыворотки крови и низкий уровень сывороточного ферритина. При ревматигеских заболеваниях выявление дефицита железа затруднено, наиболее объективными критериями являются содержание сидеробластов и определение запасов железа в костном мозге.

Гемолитическая анемия характеризуется нормохромией эритроцитов и сопровождается ретикулоцитозом. Гемолиз могут вызывать различные медикаментозные препараты, широко назначаемые ревматологическим больным (например, делагил, плаквенил, сульфасалазин), особенно лицам с наследственным дефицитом глюкозо-6-фосфатдегидрогеназы.

Очень редко развивается апластическая анемия , которая может быть индуцирована некоторыми противоревматическими препаратами (цитотоксические иммунодепрессанты, соли золота, D-пеницилламин, нестероидные противовоспалительные препараты).

При ревматических заболеваниях может наблюдаться развитие как лейкопении, так и лейкоцитоза. Развитие лейкопении (количество лейкоцитов менее 4,0 х 10 9 /л) и нейтропении (количество гранулоцитов менее 1,5 х 10 9 /л) особенно характерно для СКВ, синдрома Шегрена, смешанного заболевания соединительной ткани, синдрома Фелти, а также может быть связано с приемом некоторых лекарственных препаратов. Изолированная лимфопения (количество лимфоцитов менее 1,5 х 10 9 /л) часто наблюдается при активной СКВ, а иногда может быть следствием глюкокортикоидной терапии.

Умеренный лейкоцитоз (увеличение количества лейкоцитов более 9,0 х 10 9 /л) может наблюдаться при любых воспалительных ревматических заболеваниях, а также быть следствием лечения глюкокортикостероидами. Необходимо помнить, что лечение глюкокортикостероидами может препятствовать развитию нейтрофильного лейкоцитоза на фоне инфекции и маскировать скрыто протекающий септический процесс.

При некоторых ревматических заболеваниях (РА с системными проявлениями, синдром Шегрена, системная склеродермия, а также саркоидоз) иногда наблюдается эозинофилия (увеличение количества эозинофилов более 0,7 х 109/л). Особенно выраженная эозинофилия (количество эозинофилов более 2,0 х 109/л) наблюдается при диффузном эозинофильном фасците, синдроме Чарга - Стросса.

Увеличение количества тромбоцитов более 400 х 109/л может обнаруживаться при многих воспалительных ревматических заболеваниях. При РА тромбоцитоз отражает высокую активность заболевания. Тромбоцитоз относится к диагностическим признакам болезни Кавасаки, может наблюдаться при синдроме Шегрена и синдроме Шарпа (смешанном заболевании соединительной ткани). Тромбоцитопения является характерным признаком тромбоцитопенической пурпуры, а также нередко выявляется при СКВ (особенно при антифосфолипидном синдроме).

Скорость оседания эритроцитов (СОЭ) - достоверный критерий активности и тяжести воспалительного процесса. Оценка его в динамике позволяет судить о развитии болезни и эффективности проводимой терапии. К факторам, способствующим увеличению СОЭ, относятся прежде всего воспалительный процесс, хотя анемия, гиперхолестеринемия и беременность также сопровождаются повышением СОЭ. Снижению СОЭ могут способствовать изменения свойств эритроцитов (серповидная форма, сфероцитоз, акантоцитоз, микроцитоз), а также полицитемия, лейкоцитоз, увеличение концентрации солей желчных кислот, ги-пофибриногенемия, застойная сердечная недостаточность, кахексия. Нормальная величина СОЭ не исключает наличия ревматологической патологии, но нормализация данного показателя на фоне лечения ревматического заболевания считается одним из критериев его ремиссии. Повторные исследования СОЭ имеют важное значение для определения степени активности и эффективности лечения ревматических заболеваний.

Оценку общего анализа моги наиболее рационально проводить в сочетании с исследованием концентрационной и фильтрационной функции почек. При лейкоцитурии важно оценить результаты пробы Нечипоренко, двухстаканной пробы и посева мочи, а в случае протеинурии - суточную потерю белка, определение селективности протеинурии. Появление мочевого синдрома на фоне лечения, например купренилом или препаратами золота, требует отмены препаратов. Протеинурия является частым признаком СКВ, ССД, различных форм системных васкулитов, амилоидоза. Кроме того, она может быть обусловлена интерстициальным нефритом, индуцированным нестероидными противовоспалительными препаратами (НПВП) или поражением клубочков при лечении препаратами золота или D-пеницилламином. Нефротический синдром, проявляющийся протеинурией (более 3,5 г/сут), характерен для люпуснефрита и амилоидоза.

Иногда в моче больных системными ревматическими заболеваниями обнаруживается белок Бенс-Джонса, который состоит из легких цепей моно- или поликлоновых иммуноглобулинов. Наиболее часто белок Бенс-Джонса выявляется при синдроме или болезни Шегрена, системном амилоидозе, а также онкогематологических заболеваниях (миеломная болезнь, хронический лимфолейкоз, болезнь тяжелых цепей, макроглобулинемия Вальденстрема).

Эритроцитурия может быть обусловлена многими формами патологии мочевыводящей системы. Наиболее часто микроскопигеская гематурия (как правило, в сочетании с протеинурией) развивается при СКВ (люпуснефрите), ССД, системных васкулитах. Иногда гематурия является следствием интерстициального нефрита, вызываемого приемом НПВП, результатом воздействия на почки препаратов золота или D-пеницилламина. Появление гематурии на фоне лечения циклофосфамидом может быть обусловлено геморрагическим циститом.

Проведение копрологигеского исследования в сочетании с реакцией Грегерсена, поиском гельминтов и проведением бактериологического исследования важно для оценки пищеварительной способности желудочно-кишечного тракта, выявления возможных источников хронической кровопотери и этиологически значимых инфекционных агентов.

2. Биохимические методы .

Развитие иммунопатологического процесса сопровождается развитием диспротеинемии за счет увеличения содержания глобулиновых белковых фракций. Гипопротеинемия отмечается при нефротическом синдроме (СКВ), амилоидозе почек и РА с системными проявлениями. Электрофорез белков сыворотки крови выявляет изменения глобулиновых фракций. Повышение содержания α 2 -глобулинов определяется степенью активности воспалительного процесса, а увеличение γ-глобулиновой фракции - преимущественно иммунологическим сдвигом. Значительная гипергаммаглобулинемия наблюдается при СКВ, синдроме Шегрена, РА с висцеральными проявлениями и др.

Активность воспалительного процесса характеризуют показатели фибриногена, серомукоида, сиаловых кислот и С-реактивного белка, отражающие процесс дезорганизации соединительной ткани, а также осадочные пробы (сулемовая и тимоловая пробы).

Исследование С-реактивного белка (СРБ) в сыворотке крови рассматривается как чувствительный метод оценки степени острого и хронического воспаления. В норме концентрация СРБ в сыворотке крови очень низкая (менее 0,002 г/л), а при РА и многих воспалительных ревматических заболеваниях она увеличивается до 0,01 г/л и более. При РА величина СРБ рассматривается как один из маркеров активности заболевания. Концентрации СРБ находятся в прямой связи с активностью анкилозирующего спондилоартрита.

Изменения коагулограммы характеризуют нарушения в системе свертывания, а длительность кровотечения позволяет оценить состояние тромбоцитарного гемостаза и сосудистого компонента.

Повышение уровня креатинина и мочевины в крови больных свидетельствует о развитии почечной недостаточности на фоне вторичного гломерулонефрита и амилоидоза почек. При этом важно проводить исследование содержания в крови и моче калия, натрия, хлора, а в крови - кальция, фосфора, β-липопротеидов, холестерина и триглицеридов.

Для оценки выраженности некроза скелетных мышц используется определение концентрации ферментов, присутствующих в мышечной ткани. К ним относятся креатинфосфокиназа (КФК), альдолаза и аминотрансферазы. Наиболее чувствительным показателем является КФК. Наименьшей чувствительностью и специфичностью обладает определение аминотрансфераз. Следует иметь в виду, что у некоторых больных активным полимиозитом КФК может быть в пределах нормы (у женщин 167-1317 нмоль/л; у мужчин 283-2467 нмоль/л),

что связывают с присутствием в сыворотке крови специфического ингибитора этого фермента. Выявление повышенного уровня КФК имеет большое значение для ранней диагностики полимиозита и контроля над результатами лечения при этом заболевании.

Увеличение уровня щелочной фосфатазы (норма 217-650 нмоль/л) наблюдается при заболеваниях печени, сопровождающихся холестазом, а также при болезнях костей, характеризующихся избыточной активностью остеобластов, таких как болезнь Педжета, остеомаляция, остеосаркома, метастатическое поражение при злокачественных опухолях различной локализации.

Небольшое увеличение уровня аминотрансфераз иногда наблюдается при СКВ, ревматической полимиалгии и гигантоклеточном артериите и очень редко - в случае других ревматических заболеваний. Устойчивое значительное увеличение уровня аминотрансфераз может свидетельствовать о наличии хронического активного гепатита или первичного билиарного цирроза печени, при которых нередко наблюдаются «ревматические» проявления. Повышение уровня печеночных ферментов у больных с полиартралгиями может свидетельствовать в пользу острого вирусного гепатита. Увеличение уровня печеночных ферментов может быть также обусловлено токсическим воздействием на печень лекарственных препаратов (НПВП, метотрексата и др.).

Соотношение концентрации кальция и фосфора в сыворотке крови позволяет судить о структурных изменениях в костной ткани. Гиперурикемия диагностически важна при подозрении на наличие у больного подагрического артрита.

Функциональное состояние щитовидной железы оценивается по уровню Т3, Т4, ТТГ и уровню антител к ткани щитовидной железы. Аутоиммунный тиреоидит Хасимото достаточно часто встречается при аутоиммунных ревматических заболеваниях, в частности при РА.

3. Иммунологические методы исследования исследования ревматических заболеваний имеют важное диагностическое и прогностическое значение при многих ревматических заболеваниях.

Изучение неспецифического иммунитета включает в себя исследование количества лейкоцитов и моноцитов в сыворотке крови, компонентов комплемента, оценку подвижности, фагоцитарной и микробицидной активности мононуклеарных фагоцитов, выработку ими провоспалительных цитокинов (ИЛ-1β, ИЛ-6, ФНО-α и др.).

Увеличение уровня комплемента наблюдается при остром воспалении, инфекционных процессах, а уменьшение - при иммунокомплексных заболеваниях. Так, уменьшение концентрации С2- и С3-компонентов комплемента в реакции преципитации с антисыворотками характерно для СКВ, РА, анкилозирующего спондилоартрита, васкулитов, неспецифического язвенного колита. Это связано с активацией системы комплемента вследствие образования иммунных комплексов. Диагностически значимо определение компонентов комплемента в синовиальной жидкости (содержание снижается при РА), в спинномозговой жидкости (содержание снижается при волчаночном цереброваскулите), в биоптатах кожи и почек.

Состояние клеточного иммунитета оценивается количественными показателями (абсолютное и процентное содержание Т-лимфоцитов, активных Т-лимфоцитов, Т-хелперов I и II типа) и функциональными тестами. Наиболее часто используют:

  • реакцию торможения миграции лейкоцитов (РТМЛ) в присутствии антигенов и митогенов: РТМЛ с фитогемагглютинином (ФГА), конканавалином А (КОН-А), аллергенами гемолитического стрептококка, стафилококка. В основе реакции лежит свойство лимфоцитов при сенсибилизации организма к определенным антигенам образовывать стабилизирующие лимфокины, тормозящие миграцию лейкоцитов; чем выше функциональная активность лимфоцитов, тем меньше показатели РТМЛ;
  • реакцию бласттрансформации лимфоцитов (РБТЛ), которая оценивает функциональную активность Т-лимфоцитов. В ответ на действие митогенов (ФГА), КОН-А, антилимфоцитарной сыворотки происходит трансформация лимфоцитов в лимфобласты (чем больше образуется бластных клеток, тем выше активность Т-лимфоцитов).

Субпопуляции Т-лимфоцитов определяются с помощью МКАТ.

Для оценки функционального состояния гуморального иммунитета используется количественное определение иммуноглобулинов в плазме крови. Иммуноглобулины (Ig) - это белки, обладающие функцией антител и подразделяющиеся на 5 основных классов: IgG, IgA, IgM, IgD, IgE.

IgG присутствует в сыворотке крови в наиболее высокой концентрации (6,39-13,49 г/л), на его долю приходится 80 % антительной активности. Различают 4 субкласса IgG: IgG 1 (60-70 %), IgG 2 (20-30 %), IgG 3 (5-8 %) и IgG 4 (1-3 %).

IgA является основным секреторным иммуноглобулином, обнаруживается в слюне, слезах, кишечных и бронхиальных секретах и материнском молоке. В секретах IgA находится в виде димера, содержащего J-цепь и еще один пептид, называющийся секреторным компонентом. Концентрация IgA в норме составляет 0,7-3,12 г/л.

IgM состоит из 5 мономерных субъединиц, связанных дисульфидными мостиками и J-цепью, образующих пентамер. Концентрация IgM в сыворотке крови в норме составляет 0,86-3,52 г/л.

IgD находится в сыворотке в следовых количествах, но является основным типом иммуноглобулинов, присутствующих на мембране В-лимфоцитов.

IgE играет важную роль в реакциях гиперчувствительности немедленного типа.

Для определения концентрации иммуноглобулинов основных классов (IgG, IgM, IgA) используют метод радиальной иммунодиффузии или нефелометрическую технику, IgE - высокочувствителъные радиоиммунологический или иммуно-ферментный методы.

Определение концентрации иммуноглобулинов используют для диагностики первичных или вторичных иммунодефицитов (в этих случаях наблюдается снижение концентрации иммуноглобулинов основных классов, а также моноклональных иммуноглобулинопатий (в сочетании с иммуноэлектрофорезом сыворотки и мочи).

Наиболее частой формой иммунодефицитов является IgA-иммунодефицит, развитие которого иногда наблюдается при ревматических заболеваниях и может развиваться на фоне приема некоторых лекарственных препаратов (D-пеницилламина, сульфасалазина, каптоприла и др.). Увеличение концентрации IgA нередко наблюдается при серонегативных спондилоартропатиях, геморрагическом васкулите, болезни Шегрена, псориатической артропатии.

Часто при воспалительных ревматических заболеваниях наблюдается развитие поликлональной гипериммуноглобулинемии.

Ревматоидные факторы (РФ) являются аутоантителами к Fc-фрагменту IgG, хотя они могут быть связаны и с IgM и IgA. Возможно блокирование ревматоидного фактора аутологичным IgG, что ведет к увеличению процента скрытых, комплектованных РФ (при длительном течении ревматоидного артрита с вис-церитами).

Для выявления РФ класса М применяются:

Реакция латекс-агглютинации с инертными частицами латекса, покрытыми человеческим Ig. Наибольшее разведение сыворотки, дающее агглютинацию, считается титром реакции. Титр 1: 20 и выше расценивается как положительный;

Реакция Ваалера-Розе с бараньими эритроцитами, сенсибилизированными кроличьими антителами против эритроцитов барана. Наибольшее разведение сыворотки, дающее агглютинацию, диагностически значимо, если составляет не менее 1: 32.

Волганогные клетки (LE-клетки). Наличие LE-клеток обусловлено присутствием в сыворотках антител класса IgG к ДНК-гистоновому комплексу, которые реагируют с ядрами, высвобождающимися из различных клеток в результате разрушения этих клеток. LE-клетки обнаруживаются в 60-70 % случаев у больных СКВ. Они представляют собой зрелые нейтрофилы, фагоцитировавшие ядерную субстанцию разрушенных клеток. В цитоплазме нейтрофилов обнаруживаются крупные гомогенные включения (гематоксилиновые тельца). В случаях незавершенного фагоцитоза нейтрофилы скапливаются вокруг гематоксилинового тельца в форме розетки (феномен розеткообразования). Результат выявления не менее 5 LE-клеток на 1000 лейкоцитов считается положительным. В единичном количестве LE-клетки обнаруживаются у 10 % больных РА, при хроническом активном гепатите, лекарственной аллергии, узелковом полиартериите, ССД, ДМ, СЗСТ.

Антинуклеарные антитела (AHA) наиболее часто определяются при ревматических заболеваниях и встречаются более чем у 90 % больных СЗСТ. Они представляют собой семейство аутоантител, взаимодействующих с рибонуклеиновыми кислотами и белками ядра, цитоплазматическими антигенами. Определяются AHA методом непрямой иммунофлюоресценции, двойной иммунодиффузии и контрэлектрофореза, иммуноферментным методом и методом иммуноблоттинга. При использовании метода непрямой иммунофлюоресценции в практической работе выделяют шесть типов окрашивания или типов свечения ядра, которые важны для диагностики системных заболеваний соединительной ткани:

  • гомогенное окрашивание, связанное с наличием антител к двуспиральной ДНК и гистонам, наиболее характерно для СКВ и лекарственной волчанки;
  • периферигеское окрашивание, вызванное циркуляцией антител к ядерной мембране (специфично для СКВ);
  • гранулярное окрашивание встречается наиболее часто, указывает на наличие различных AHA, поэтому обладает наименьшей специфичностью (при СКВ, РА с висцеральными проявлениями, смешанном заболевании соединительной ткани);
  • нуклеолярное (ядрышковое) свегение обусловлено антителообразованием к компонентам ядрышка, встречается при ССД, болезни Шегрена. Изредка АНФ обнаруживаются при эндокринных заболеваниях (полиэндокринопатия, сахарный диабет I типа, тиреоидит, тиреотоксикоз), кожных заболеваниях (псориаз, пузырчатка), а также на фоне беременности, после трансплантации органов и тканей (при развитии реакции «трансплантат против хозяина»), у больных, находящихся на программном гемодиализе;
  • центромерное свегение отмечается при появлении антител к центромерам хромосом (характерно для хронического течения ССД);
  • цитоплазматигеское свегение указывает на наличие антител к тРНК-синтетазам, в частности Jo-1 (встречается при ДМ/ПМ).

Методами радиоактивного и иммунного связывания, радиальной иммунодиффузии, иммунопреципитации выявляются AHA к отдельным ядерным антигенам.

Антитела к дезоксирибонуклеиновой кислоте (ДНК). Антитела к нативной (двуспиральной) ДНК, особенно те из них, которые выявляются с помощью радиоиммунного теста (метод Фарра), относительно специфичны для СКВ. Их определение имеет существенное значение для оценки активности болезни, прогнозирования развития обострений и эффективности проводимой терапии. Антитела к денатурированной (односпиральной) ДНК менее специфичны для СКВ и часто выявляются при других ревматических заболеваниях.

Антитела к гистонам. Гистоны - это компоненты ядра, состоящие из трех субъединиц: двух димеров Н2А-Н2В, которые фланкированы тетрамером НЗ-Н4 и ассоциированы с третьей субъединицей, состоящей из 2 витков молекулы ДНК. Антитела к гистонам Н2А-Н2В обнаруживаются почти у всех больных с медикаментозным волчаночноподобным синдромом (индуцированным новокаинамидом), у больных, получающих новокаинамид, но не имеющих симптомов волчанки, а также у 20 % больных СКВ.

Антитела к рибонуклеопротеинам (РНП). Антитела к рибонуклеопротеинам, включающие анти-Sm, анти-SmRNP (U1RNP), анти-Ro/SS-A, анти-Lа/SS-B, суммарно встречаются при СКВ чаще, чем антитела к двуспиральной ДНК. Концентрация этих антител в крови необычайно высока. Обнаруживаются при смешанном заболевании соединительной ткани, реже - у больных СКВ, у которых ведущим клиническим проявлением является поражение кожи, подостром течении ССД и других аутоиммунных ревматических заболеваниях.

Антитела к Sm-антигену. Антитела к Sm-антигену обнаруживаются только при СКВ; при этом в случае использования иммунофлюоресцентного метода - в 30 % случаев, а по данным метода гемагглютинации - в 20 %. Антитела к Sm-антигену не выявляются при других ревматических заболеваниях. Антитела к Sm-антигену рассматриваются как антитела-маркеры СКВ, их выявление входит в число диагностических критериев этого заболевания. При наличии Sm-антител наблюдается более злокачественное течение заболевания, поражение центральной нервной системы, волчаночные психозы и относительная сохранность функции почек. Однако уровень антител к Sm-антигену не коррелирует с активностью и клиническими субтипами СКВ.

Антитела к Ro(Robert)/SS-A направлены против ядерных рибонуклеопротеинов, с которыми связаны Y1-Y5 цитоплазматические РНК, транскрибируемые РНК-полимеразой III, В зависимости от чувствительности используемых методов исследования антитела к Ro/SS-A обнаруживаются у 60-78 % больных с синдромом Шегрена, у 96 % больных болезнью Шегрена и у 35-57 % больных СКВ.

При СКВ продукция данных антител ассоциируется с определенным набором клинических проявлений и лабораторных нарушений: фотосенсибилизацией, синдромом Шегрена, поражением легких, лимфопенией, тромбоцитопенией и гиперпродукцией РФ. Повышение концентрации антител к Ro/SS-A в сочетании с гиперпродукцией IgM РФ часто наблюдается при АНФ-отрицательном подтипе заболевания (у 2-5 % больных СКВ) - так называемой подострой кожной волчанке.

Антитела к La(Lane)/SS-B направлены против белков, связанных с транскриптами РНК полимеразы-3. Антитела к La/SS-B в большинстве случаев наблюдаются совместно с антителами к Ro/SS-A, в то время как последние могут встречаться изолированно. Антитела к La/SS-B обнаруживаются при болезни и синдроме Шегрена, сочетающемся с РА и СКВ (но не с системной склеродермией), и при первичном билиарном циррозе печени. При СКВ антитела к SS-B/La-антигену чаще встречаются в начале болезни, развивающейся в пожилом возрасте, и ассоциируются с низкой частотой развития нефрита.

Антитела Scl-70 чаще выявляются при диффузной форме ССД. При данном заболевании присутствие антител Scl-70 в сочетании с носительством генов HLA-DR3/DRW52 в 17 раз увеличивает риск развития легочного фиброза. Обнаружение антител Scl-70 у больных с изолированным феноменом Рейно указывает на высокую вероятность развития ССД.

Антицентромерные антитела (АсА) обнаруживаются у 20 % больных ССД (у большинства из них имеются признаки CREST-синдрома), реже - при первичном билиарном циррозе печени (у половины этих больных имеются признаки склеродермии) и очень редко - при хроническом активном гепатите и первичной легочной гипертензии. Антитела к центромере рассматриваются как прогностически неблагоприятный показатель развития ССД у больных с синдромом Рейно.

Антитела к аминоацилсинтетазе тРНК (антисинтетазные антитела) обнаруживаются при наличии у больных ПМ интерстициального поражения легких. В целом антитела к синтетазам выявляются у 40 % больных с ПМ, у 54 % больных с ДМ в случае идиопатической формы этих заболеваний и только у 6 % больных ПМ. Антитела к синтетазам обнаруживаются и при других ДБСТ, кроме опухолевого миозита. Продукция антисинтетазных антител ассоциируется с развитием так называемого «антисинтетазного синдрома».

Антифилаггриновые антитела (АФА) представляют семейство, в которое входят антикератиновые антитела, антиперинуклеарный фактор, антитела к Sa-антигену и недавно описанные антитела к циклическому цитруллинсодержащему пептиду. По современным представлениям, главной антигенной детерминантой, распознаваемой этими антителами, являются цитруллинированные пептиды, которые, в частности, присутствуют в синовиальной оболочке больных РА. АФА являются высокоспецифическими для РА. Наибольшее применение АФА находят в диагностике раннего РА. В ряде работ показано более агрессивное течение заболевания у больных РА при наличии этих антител.

Антитела к фосфолипидам (АФЛ) - гетерогенная группа аутоантител, реагирующих с отрицательно заряженными (фосфатидилсерин, фосфатидилинозитол, кардиолипин) и нейтральными (фосфатидилэтаноламин, фосфатидилхолин) фосфолипидами. К ним относятся волчаночный антикоагулянт, антитела к кардиолипину и факторы, которые определяют развитие ложноположительной реакции Вассермана.

Волчаночный антикоагулянт (ВА) - иммуноглобулины классов IgG и/или IgM, подавляющие in vitro одну или несколько фосфолипидзависимых коагуляционных реакций. ВА рассматривают как представителя семейства антител к фосфолипидам, их синтез ассоциируется с развитием венозных или артериальных тромбозов.

Антитела к кардиолипину (АКЛ). Для определения АКЛ используют иммуноферментный метод. Продукция АКЛ (особенно при высоких титрах АКЛ класса IgG), так же как и образование В А, ассоциируется с развитием антифосфолипидного синдрома.

Ложноположителъная реакция Вассермана является быстрым серологическим методом диагностики сифилиса, основанным на флоккуляции стандартной суспензии фосфолипидов (кардиолипин) сывороткой больного, содержащей антитрепонемные антитела (реагин). Для более точной диагностики сифилиса используют метод иммунофлюоресценции с трепонемным антигеном.

У 15-20 % больных СКВ выявляется ложноположительная реакция Вассермана, а у 30 % здоровых лиц с ложноположительной реакцией Вассермана в последующем развивается СКВ. Особенно часто ложноположительная реакция Вассермана обнаруживается у больных с антифосфолипидным синдромом.

Антинейтрофильные цитоплазматигеские антитела (АНЦА). АНЦА относятся к семейству аутоантител, направленных против специфических антигенов, которые присутствуют в цитоплазме нейтрофилов. Существуют два типа АНЦА, которые определяют с помощью метода непрямой иммунофлюоресценции при использовании фиксированных абсолютным спиртом нейтрофилов доноров. Антитела к протеиназе-3 вызывают диффузное (классическое) цитоплазматическое свечение и обозначаются как к-АНЦА или ц-АНЦА. Антитела к миелопероксидазе, эластазе и лактоферрину характеризуются перинуклеарным типом свечения и обозначаются как перинуклеарные или п-АНЦА. АНЦА часто выявляются при системных васкулитах.

Стрептококковая инфекция вызывает увеличение титров антистрептококковых антител. Определение антистрептококковых антител используют для диагностики острой ревматической лихорадки и острого гломерулонефрита. Наибольшее распространение получило определение антител к стрептолизину-0 (АСЛ-0), стрептокиназе (АСК) и стрептодезоксирибонуклеазе В (анти-ДНКаза В). Увеличение титров АСЛ-0 обнаруживается более чем у 2/3 больных острой ревматической лихорадкой и только у половины больных острым гломерулонефритом. Максимальные титры антистрептококковых антител выявляются в период развития полиартрита, а во время развития кардита или хореи титры этих антител значительно уменьшаются, что снижает диагностическую ценность данного теста.

Большое значение для диагностики имеют реакции определения антител после перенесенных инфекций (реакция Вассермана, реакции связывания комплемента с туберкулезным, псевдотуберкулезным, иерсиниозным, шигеллезным и другими антигенами, HBs-антигенами, гонококковым (реакция Борде - Жангу) и бруцеллезным (реакция Райта - Хеддльсона) антигенами, титр антихламидийных антител).

Криоглобулины - группа сывороточных белков, обладающих аномальной способностью к обратимой преципитации или образованию геля при низкой температуре. Криоглобулины могут обнаруживаться при различных заболеваниях внутренних органов, в том числе весьма часто при системных ревматических болезнях.

В зависимости от состава криоглобулины разделяют на три основных типа. Тип I состоит из моноклональных иммуноглобулинов IgA или IgM, реже - моноклональных легких цепей (белок Бене-Джонса). Тип II (наблюдается при так называемой смешанной криоглобулинемии) состоит из моноклональных иммуноглобулинов (обычно IgM, реже IgA или IgG), обладающих антиглобулиновой активностью против поликлонального IgG. Тип III (наблюдается при так называемой смешанной криоглобулинемии) состоит из одного или нескольких классов поликлональных иммуноглобулинов. Самой частой формой криоглобулинемии при ревматических заболеваниях является тип III. Он встречается при СКВ, РА, ССД, синдроме Шегрена.

Циркулирующие иммунные комплексы (ЦИК). Увеличение концентрации ЦИК отражает воспалительную и иммунологическую активность патологического процесса при СКВ, РА, серонегативных спондилоартропатиях.

Исследование синовиальной жидкости (СЖ). Нормальная СЖ стерильная, светло-желтая, прозрачная и вязкая, цитоз не превышает 0,18 х 109/л. Клеточный состав СЖ представлен клетками покровного слоя синовиальной оболочки и лейкоцитами, при этом в норме преобладают моноциты и лимфоциты (до 75 %), количество полиморфно-ядерных нейтрофилов колеблется от 0 до 25 %, а синовиоцитов - от 0 до 12 %.

Количество СЖ в норме 0,2-2 мл, при суставных заболеваниях 3-25 мл и более.

Цвет СЖ в норме светло-желтый; при дегенеративно-дистрофических заболеваниях - светло-желтый, желтый, соломенный; при воспалительных заболеваниях - от светло-желтого до бурого, лимонный, янтарный, серый, розоватый.

Прозрачность. Различают четыре степени прозрачности СЖ: прозрачная, полупрозрачная, умеренно мутная, интенсивно мутная. В норме СЖ прозрачная, при невоспалительных заболеваниях суставов - прозрачная, полупрозрачная, при воспалительных - умеренно или интенсивно мутная.

Осадок. В норме осадка нет; при воспалительных заболеваниях суставов осадок обнаруживается практически всегда. Как правило, это обрывки клеточных мембран, фибриновых нитей, коллагеновых волокон, обломки хряща и синовиальной оболочки, образующиеся в процессе деструкции, в ряде случаев также кристаллы.

Плотность муцинового сгустка. В норме муциновый сгусток плотный, при невоспалительных заболеваниях суставов - умеренно плотный, при воспалительных - рыхлый или умеренно рыхлый.

Вязкость. Вязкость СЖ определяют различными способами. В рутинных исследованиях вязкость СЖ принято определять по длине муциновой нити. Различают три степени вязкости: низкая - до 1 см, средняя - до 5 см и высокая - свыше 5 см. В норме вязкость СЖ высокая, при невоспалительных заболеваниях суставов - средняя, при воспалительных - низкая. Существуют также инструментальные методы оценки вязкости СЖ с применением визкозиметров.

Цитоз. В пробирки, содержащие 0,4 мл изотонического раствора натрия хлорида, добавляют по 0,02 мл СЖ. Подсчет общего числа клеток производят в счетной камере. При невоспалительных заболеваниях суставов общее число клеток не превышает 3 х 109/л, при воспалительных - колеблется от 3 до 50 х 109/л. В септической СЖ цитоз превышает 50 х 109/л.

Синовиоцитограмма. При невоспалительных заболеваниях суставов в СЖ преобладают лимфоциты (до 80 %), при воспалительных заболеваниях полиморфно-ядерные нейтрофилы (до 90 %).

Рагоциты. В нормальной СЖ рагоцитов нет. При невоспалительных заболеваниях суставов и серонегативных спондилоартритах количество рагоцитов составляет от 2 до 15 % от общего числа клеток. При РА количество рагоцитов достигает 40 % и более в зависимости от степени местной воспалительной активности.

Кристаллы. Кристаллы в СЖ идентифицируют при помощи поляризационного микроскопа. Довольно надежно идентифицируются кристаллы уратов и пирофосфата кальция, имеющие противоположные оптические свойства. Кристаллы гидроксиапатита в связи с небольшими размерами могут быть выявлены только при электронной микроскопии.

Общий белок. В норме содержание белка в СЖ составляет 15-20 г/л, при невоспалительных заболеваниях суставов - 22-37 г/л, при воспалительных -35-48 г/л, при РА - до 60 г/л.

Глюкоза. В норме содержание глюкозы составляет 3,5-5,5 ммоль/л, при невоспалительных заболеваниях суставов - 4,5-5,5 ммоль/л, при воспалительных - 2,0-5,5 ммоль/л. При септических артритах глюкоза в СЖ практически не обнаруживается.

Ревматоидный фактор, С-реактивный белок. В нормальной СЖ ревматоидный фактор не обнаруживается, при невоспалительных заболеваниях суставов может определяться в небольшом титре - 1: 20-1: 40; при серопозитивном РА титр ревматоидного фактора в СЖ существенно превышает 1: 40. Уровень СРБ в СЖ при невоспалительных заболеваниях суставов составляет 0,001 г/л, при воспалительных - от 0,01 до 0,06 г/л и выше.

Болезни суставов
В.И. Мазуров

Наряду с применяемыми в офтальмологической практике инструментальными методами обследования, лабораторные исследования могут проводиться с целью повышения точности диагностики, выявления индивидуальных особенностей течения процесса, оценки его тяжести и возможных осложнений.

Ю.С. Краморенко, д.м.н., профессор,
КазНИИ глазных болезней, г. Алматы

Современные требования к ранней диагностике офтальмопатологии диктуют необходимость обоснования подходов к проведению того или иного вида лабораторных исследований, разработки диагностических программ (алгоритмов) с учетом международных требований при определении стандартов (протоколов) диагностики и лечения больных.

Лабораторные исследования - важная составляющая лечебно-диагностического процесса, дающая врачу-клиницисту всестороннюю информацию о состоянии здоровья пациента, что, в свою очередь, способствует постановке наиболее точного диагноза и контролю эффективности проводимого лечения. Изменения в периферической крови являются следствием многозвенных межсистемных процессов, отражающих патогенетические, компенсаторные, адаптивные сдвиги, сопутствующие развитию заболевания.

При обращении к глазному врачу районной или городской поликлиники пациенту, при необходимости, проводится первый этап лабораторного обследования, включающий общий анализ крови (ОАК) - широко распространенное исследование на уровне ПМСП при различных видах офтальмопатологии.

К задачам второго этапа лабораторного обследования относится проведение биохимических исследований, необходимых для постановки клинического диагноза и оценки степени тяжести заболевания, определения характера и объема лечебных мероприятий, контроля эффективности лечения, прогнозирования развития патологического процесса, а также для направления в хирургический стационар.

Клетки крови - это главные участники ранней ответной реакции на любые изменения в тканях, являясь чувствительным индикатором состояния организма. Общий анализ крови позволяет оценить насыщенность крови гемоглобином, который обеспечивает транспортировку кислорода в крови, определить относительное (в процентах) и абсолютное количество клеток крови (эритроцитов, лейкоцитов, тромбоцитов, эозинофилов и других), скорость оседания эритроцитов (СОЭ).

Биохимический анализ крови является неотъемлемым методом лабораторной диагностики нарушения обменных процессов при различных заболеваниях.

Углеводный обмен отражает уровень глюкозы крови - весьма доступный, но нестабильный показатель, зависящий от ряда причин, в том числе от эмоционального состояния пациента, в цельной крови он соответствует - 3,05-6,3 ммоль/л.

Более значимым, как показатель риска в диагностике развития глазных осложнений сахарного диабета, является определение гликозилированного гемоглобина (HbA1C) крови, уровень которого отражает концентрацию глюкозы как натощак, так и после еды, в норме он составляет 4-6% от общего количества гемоглобина и соответствует нормальному содержанию сахара в 3-5 ммоль/л.

Рост доли гликозилированного гемоглобина на 1% связан с увеличением уровня глюкозы в плазме крови, в среднем, на 2 ммоль/л. Определение гликозилированного гемоглобина является одним из методов, способных нивелировать отрицательное влияние метаболических нарушений и отражает степень компенсации углеводного обмена в течение 3 месяцев. Это наиболее доступный маркер качества предоперационной подготовки для пациентов, страдающих сахарным диабетом. Результаты исследования гликозилированного гемоглобина показали, что у здоровых лиц его содержание в крови не зависит от пола и возраста.

Липидный обмен определяется такими показателями, как: холестерин ОХ - 5,2 ммоль/л, холестерин липопротеидов высокой плотности (ХС ЛПВП) - более 1,45, холестерин липопротеидов низкой плотности (ХС ЛПНП) - 3,37 ммоль/л, коэффициент атерогенности - до 3 единиц, триглицериды (ТГ) - 0,68-2,3 ммоль/л. У здоровых лиц эти показатели определяются в указанных пределах.

Традиционно липидный спектр включает определение общего холестерина и ХС в липопротеиновых комплексах. Определение показателей липидного обмена в минимальном объеме необходимо для постановки клинического диагноза при различной сосудистой патологии и оценки степени тяжести заболевания, так как дислипидемия является одним из пусковых механизмов повреждения сосудов. Повышение отношения ЛПНП к ЛПВП и индекса атерогенности (отношение ХС-ХС ЛПВП/ХС ЛПВП) рассматривается как достоверный фактор риска атерогенных тенденций в развитии сосудистой патологии. Повышение уровня холестерина в составе ЛПНП считается фактором риска развития сосудистых осложнений СД. Маркерами атерогенных липопротеидов и метаболического синдрома являются триглицериды - эфиры глицерина и жирных кислот (полиненасыщенных и мононенасыщенных), основной компонент липопротеидов очень низкой плотности (ЛПОНП). У больных с повышенной концентрацией триглицеридов выявляются выраженные сосудистые изменения. Установлено, что гипертриглицеридемия функционально связана с гипергликемией.

Белки крови выполняют многообразные функции, образуя комплексы с углеводами, липидами и другими субстанциями, связывают токсины, что можно рассматривать как важный механизм детоксикации организма.

Электрофорез белков является одним из наиболее информативных лабораторных тестов. Протеинограмма крови дает ценные сведения о состоянии белковой системы, реагирующей на метаболические изменения в организме под влиянием тех или иных воздействий. Изменение белковых фракций указывает на тяжесть, длительность и остроту поражения, эффективность проводимой терапии и на прогноз заболевания.

Особое место среди белков острой фазы воспаления занимает C-реактивный белок (СРБ), относящийся к бета-глобулинам, как биохимический маркер активности течения заболевания наиболее доступный для определения на любом уровне. СРБ, взаимодействуя с Т-лимфоцитами, фагоцитами и тромбоцитами, регулирует их функции при воспалении, стимулирует иммунные реакции.

С-реактивный белок появляется в крови уже через 4-6 часов от начала воспалительного процесса (до увеличения количества гранулоцитов) и достигает пика через 1-2 дня, при успешном выздоровлении его уровень быстро снижается. С переходом в хроническую фазу заболевания С-реактивный белок исчезает из крови и снова появляется при обострении процесса. По диагностической значимости сопоставим с СОЭ, но уровень С-реактивного белка растет и снижается быстрее.

Повышение уровня С-реактивного белка наблюдается при острых бактериальных и вирусных инфекциях, злокачественных новообразованиях и аутоиммунных заболеваниях, установлена прямая связь между уровнем СРБ и риском осложнений со стороны периферических сосудов.

После хирургических вмешательств в остром периоде уровень СРБ повышается, однако начинает быстро снижаться в отсутствие бактериальной инфекции, поэтому определение СРБ в послеоперационном периоде может применяться для контроля за опасностью возникновения такой инфекции. Поскольку уровень С-реактивного белка в течение суток может резко меняться, его следует определять в динамике. В сыворотке здорового человека СРБ отсутствует.

Клинико-лабораторные исследования при некоторых социально значимых заболеваниях глаз, связанных с нарушением обменных процессов, определили необходимость их проведения и мониторинга в процессе лечения и диспансерного наблюдения.

Диабетическая ретинопатия. Многообразие клинических проявлений сахарного диабета (СД) диктует необходимость лабораторного исследования с целью выявления особенностей метаболизма развития заболевания, характеризующегося нарушением углеводного, жирового, белкового и других видов обмена веществ, и определения наиболее информативных показателей, которые могут быть использованы в качестве диагностических и прогностических тестов, критериев оценки эффективности лечения.

Лабораторные исследования при ДР должны включать: определение уровня глюкозы и гликозилированного гемоглобина крови в динамике; исследование липидограммы (ХС, ХС ЛПВП, ХС ЛПНП, ТГ).

Динамическое определение уровня гликемии дает возможность судить об уровне метаболических нарушений, степени их коррекции. Уровень гликозилированного гемоглобина крови необходимо контролировать каждые 3 месяца.

Возрастная макулярная дегенерация (ВМД) - заболевание, которое развивается на фоне генерализованного нарушения церебральной гемодинамики, общей и местной сосудистой патологии, приводящей к ухудшению кровоснабжения и развитию трофических процессов в глазу. Дистрофические процессы в сетчатой оболочке глаза отражают нарушения обмена веществ во всем организме.

Исследование липидограммы - показало, что у больных ВМД пожилого возраста показатели липидного обмена крови отличались от физиологической нормы в среднем на 20-30%. Установлено повышение содержания общего холестерина ХС липопротеидов низкой плотности в 1,2 раза относительно показателей контрольной группы, тогда как уровень ХС липопротеидов высокой плотности был ниже в 1,7 раза по сравнению с величиной контроля, соответственно, значительно повышался индекс атерогенности - в 3,1 раза. Выраженность нарушений возрастала с увеличением длительности и степени тяжести заболевания. Выявлена прямая корреляционная связь между содержанием триглицеридов и количеством ОХ, обратная - между уровнем ЛПНП и ЛПВП.

Глаукома. Проводимое в КазНИИ глазных болезней комплексное клинико-лабораторное исследование метаболических и иммунологических факторов, играющих важную роль в патогенезе первичной глаукомы, выявило активацию процессов перекисного окисления липидов на фоне снижения антиоксидантной защиты, проявляющейся в дисбалансе в системе антиокислительных ферментов эритроцитов и лимфоцитов (каталазы, супероксиддисмутазы и глутаионредуктазы) и снижении уровня природных антиоксидантов в крови (уменьшение содержания витаминов А, Е, С, рибофлавина). Эти нарушения были одинаково выражены как при открытоугольной, так и при закрытоугольной формах глаукомы, но в наибольшей степени в период острого приступа.

У больных с выраженной глаукомой уровень холестерина выше нормы выявлен в 75% случаев, преимущественно за счет повышения уровня ХС ЛПНП, высокий уровень триглицеридов, а также уменьшение содержания альбуминов и увеличение - бета и гамма-глобулинов.

Таким образом, диагностика офтальмопатологии, основанная на клинико-лабораторных данных, направлена на проведение соответствующего лечения для улучшения его результатов. Динамическое исследование биохимических и гематологических показателей в процессе лечения дает возможность оценить его эффективность, так как отсутствие положительных сдвигов в уровне исследуемых показателей свидетельствует о недостаточном эффекте проводимого лечения, прогрессировании процесса. Комплекс клинико-лабораторных методов обследования офтальмологических больных расширяет возможности ранней диагностики, что позволяет определить схему лечения патогенетической направленности.

20 июня 2018
«Казахстанский фармацевтический вестник» №12 (542), июнь 2018 г.

ОБЩИЕ И ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ

Для установления дерматологического диагноза часто требуются дополнительные исследования, включающие:

Эпикутанные и интракутанные кожные тесты при аллергических состояниях;

Микологические, бактериологические, вирусологические, серологические тесты при дерматозах, вызванных микроорганизмами;

Иммунофлюоресцентные тесты при аутоиммунных заболеваниях: ангиографические исследования при сосудистых нарушениях;

Проктологическое исследование при анальных симптомах;

Биохимические анализы;

Рентгенологическое исследование, анализы крови и мочи;

Гистологическое исследование.

Кожные тесты применяют для идентификации аллергенов у больных с аллергическим контактным дерматитом. Эти тесты определяют отсроченный (тип IV) гиперчувствительный ответ к контактным аллергенам и, таким образом, отличаются от скарификационных и внутрикожных, которые обнаруживают немедленный (тип I) гиперчувствительный ответ. С помощью кожных тестов (капельных, аппликационных) может быть изучен широкий спектр возможных аллергенов. Применяются стандартные наборы обычно сенсибилизирующих химических веществ, растворенных в воде или эфире. Смоченные ими салфетки накладываются на кожу под окклюзионную повязку, которую оставляют на 48 ч, а затем повязки удаляют и проводят оценку реакции. Места тестирования должны повторно осматриваться еще через 48 ч, поскольку реакция ГЗТ иногда требует для своего развития более 48 ч. Позитивные тесты требуют своей клинической интерпретации. Окончательное заключение может быть сделано только с учетом клинической картины и анамнеза заболевания.

Для микроскопического исследования на патогенные грибы используют соскобы чешуек (с помощью скальпеля) и кусочки ногтей, обломки волос, которые переносятся на стекло и обрабатываются щелочью (КОН) для дальнейшего исследования. Мазки и отделяемое из уретры исследуются на гонококки и других возбудителей ИППП; при диагностике акантолитической пузырчатки исследуют мазки-отпечатки с эрозивных поверхностей на клетки Тцанка. Для подтверждения диагноза чесотки специальными методами в соскобах кожи обнаруживают чесоточного клеща; для выявления бледных трепонем проводят исследование тканевого сока со дна твердого шанкра в темном поле микроскопа. Для уточнения возбудителей микозов, пиодермии, ИППП проводят культуральное исследование.

Иммунофлюоресцентные тесты. Для диагностики пузырных дерматозов используют реакции прямой и непрямой иммунофлюоресценции. С их помощью определяют аутоантитела, направленные против кожи. Например, антитела класса IgG в межклеточной склеивающей субстанции шиповатого слоя эпидермиса при вульгарной пузырчатке обнаруживают с помощью реакции прямой иммунофлюоресценции с использованием клинически непораженной кожи больного и меченных флюорохромом антител класса IgG.

Гистологическим исследованием кожи может быть подтвержден или исключен предположительный дерматологический диагноз. Некоторые дерматозы требуют гистологических исследований для определения стадии заболевания (грибовидный микоз) или глубины опухоли, что имеет большое значение для прогноза и последующего лечения.

Выбор места биопсии имеет важное значение для последующего гистологического исследования. Важно выбрать типичный элемент, наиболее диагностически ценный. Для этого больше всего подходят свежие первичные элементы. При диссеминированных высыпаниях следует выбрать очаг, удаление которого приведет к наименьшим косметическим и функциональным дефектам. При взятии биопсии следует помнить о возможности развития на месте удаленного очага келоидного рубца, особенно если биопсия берется с элемента в области шеи и грудины. Кроме того, следует учитывать, что заживление раны может быть замедленным, если биопсия берется с области лодыжки или голени, особенно у больных с нарушенным кровообращением.

Процедура биопсии проводится под местной анестезией. Маленький элемент удаляют полностью. У более крупного обычно удаляют периферическую часть вместе с краем окружающей нормальной кожи. Наилучшим с точки зрения диагностики и косметических последствий является проведение клиновидной биопсии с помощью скальпеля. Материал для гистологического исследования может также быть взят с помощью электрохирургии или пункционной биопсии.

Исключения из стандартной гистологической процедуры. Стандартные фиксирующие средства не применяются при криостатном методе быстрых срезов, бактериологических исследованиях биопсийного материала (например, для исключения туберкулеза кожи), прямого нммунофлюоресиснтного исследования (буллезные дерматозы, красная волчанка), а также при гистохимических, цитохимических, иммуноцитологических исследованиях (лимфомы) и электронной микроскопии.

Гистологическое заключение выносится с учетом места взятия биопсии, возраста больного, анамнеза болезни, клинической картины.

Для диагностики большинства заболеваний кожи материал для исследования может быть получен путем пункционной биопсии диаметром от 2 до 8 мм (обычно 4 мм). Для обычного гистологического исследования и большинства специальных окрасок биоптат помещают в формалин. Для электронной микроскопии используется буфер – глутаральдегид. При иммунофлюоресцентной технике образец должен быть либо немедленно заморожен, либо помещен в специальный буферный транспортный раствор.

Электронная микроскопия кожи показана реже, но очень помогает при диагностике редких заболеваний – разновидностей буллезного эпидермолиза и др.

Из книги Акушерство и гинекология: конспект лекций автора А. А. Ильин

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

автора А. Ю. Яковлева

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Из книги Деменции: руководство для врачей автора Н. Н. Яхно

Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

Из книги Терапевтическая стоматология. Учебник автора Евгений Власович Боровский

Из книги Сахарный диабет. Самые эффективные методы лечения автора Юлия Попова

Из книги Нет дисбактериозу! Умные бактерии для здоровья ЖКТ автора Елена Юрьевна Заостровская

Из книги Симфония для позвоночника. Профилактика и лечение заболеваний позвоночника и суставов автора Ирина Анатольевна Котешева

Из книги Как избавиться от боли в спине автора Ирина Анатольевна Котешева

Из книги Боли в спине и суставах. Что делать? автора Ирина Анатольевна Котешева

Лабораторные методы исследования

Исследование мокроты. Мокрота - патологическое отделяемое органов дыхания, выбрасываемое при кашле. В состав мокроты могут входить слизь, серозная жидкость, клетки крови и дыхательных путей, простейшие, редко гельминты и их яйца. Исследование мокроты помогает установить характер патологического процесса в органах дыхания, а в ряде случаев определить его этиологию.

Мокроту для исследования следует брать утреннюю, свежую, по возможности до еды и после полоскания рта. Только для обнаружения микобактерий туберкулеза мокроту можно собирать в течение 1-2 сут (если больной выделяет ее мало). В несвежей мокроте размножается сапрофитная микрофлора, разрушаются форменные элементы. Для собирания мокроты используют специальные банки (плевательницы) с завинчивающимися крышками и мерными делениями.

Изучение мокроты начинают с ее осмотра сначала в прозрачной банке, а затем в чашке Петри, которую ставят попеременно на черный и белый фон. Отмечают следующие признаки.Характер, цвет и консистенция мокроты. Слизистая мокрота обычно бесцветная, вязкая, встречается при остром бронхите. Серозная мокрота тоже бесцветная, жидкая, пенистая, наблюдается при отеке легкого. Слизисто-гнойная мокрота, желтая или зеленоватая, вязкая, бывает при хроническом бронхите, туберкулезе и т. д. Чисто гнойная мокрота однородная, полужидкая, зеленовато-желтая, характерна для абсцесса легкого при его прорыве. Кровянистая мокрота может быть как чисто кровяной при легочных кровотечениях (туберкулез, рак, бронхоэктазы), так и смешанного характера, например слизисто-гнойная с прожилками крови (при бронхоэктазах), серозно-кровянистая пенистая (при отеке легкого), слизисто-кровянистая (при инфаркте легкого или застое

в системе малого круга кровообращения), гнойно-кровянистая, полужидкая, коричневато-серая (при гангрене и абсцессе легкого). Если кровь из дыхательных путей выделяется наружу не сразу, а длительно задерживается в них, ее гемоглобин превращается в гемосидерин и придает мокроте ржавый цвет (характерно для крупозной пневмонии).

При стоянии мокрота может расслаиваться. Для хронических нагноительных процессов характерна трехслойная мокрота: верхний слой слизисто-гнойный, средний-серозный, нижний-гнойный. Иногда гнойная мокрота разделяется на два слоя - серозный и гнойный.

Запах. Чаще отсутствует. Зловонный запах свежевыделенной мокроты зависит от гнилостного распада ткани (гангрена, распадающаяся раковая опухоль) либо от разложения белков мокроты при задержке ее в полостях (абсцесс, бронхоэктазы). Отдельные элементы, различимые невооруженным глазом. В мокроте могут быть обнаружены



спирали Куршмана в виде небольших плотных извитых беловатых нитей; сгустки фибрина - беловатые и красноватые древовидно-разветвленные эластичные образования, встречаемые при фибринозном бронхите, изредка при пневмонии; «чечевицы» - небольшие зеленовато-желтые плотные комочки, состоящие из обызвествленных эластических волокон, кристаллов холестерина и мыл и содержащие микобактерии туберкулеза; пробки Дитриха, сходные с «чечевицами» по виду и составу, но не содержащие туберкулезных микобактерии и издающие при раздавливании зловонный запах (встречаются при гангрене, хроническом абсцессе, гнилостном бронхите); зерна из-

вести, обнаруживаемые при распаде старых туберкулезных очагов; друзы актиномицетов в виде мелких желтоватых зернышек, напоминающих манную крупу; некротизированные кусочки ткани легкого и опухолей; остатки пищи.

Реакция среды. В мокроте реакция среды, как правило, щелочная; кислой она становится при разложении мокроты и от примеси желудочного сока, что помогает дифференцировать кровохарканье от кровавой рвоты.

Микроскопическое исследование мокроты. Производится как в нативных, так и в окрашенных препаратах. Для первых из налитого в чашку Петри материала отбирают гнойные, кровянистые, крошковатые комочки, извитые белые нити и переносят их на предметное стекло в таком количестве, чтобы при накрывании покровным стеклом образовался тонкий полупрозрачный препарат.

Его просматривают сначала при малом увеличении для первоначальной ориентировки и поисков спиралей Куршмана, а затем при большом увеличении для дифференцирования форменных элементов. Спирали Куршмана представляют собой тяжи слизи, состоящие из центральной плотной осевой нити и спиралеобразно окутывающей ее мантии, в которую бывают вкраплены лейкоциты (часто эозинофильные) и кристаллы Шарко- Лейдена (рис. 27). Спирали Куршмана появляются в



мокроте при спазме бронхов, чаще всего при бронхиальной астме, реже при пневмонии, раке легкого. При большом увеличении в нативном препарате можно обнаружить лейкоциты, небольшое количество которых имеется в любой мокроте, а большое - при воспалительных и особенно нагноительных процессах; эозинофилы (рис. 28) можно отличить в нативном препарате по однородной крупной блестящей зернистости, но легче их узнать при окраске. Эритроциты появляются при разрушении ткани легкого, пневмонии, застое в малом круге кровообращения, инфаркте легкого и т. д.

Плоский эпителий попадает в мокроту преимущественно из полости рта и не имеет диагностического значения. Цилиндрический мерцательный эпителий в небольшом количестве присутствует в любой мокроте, в большом - при поражениях дыхательных путей (бронхит, бронхиальная астма). Альвеолярные макрофаги - крупные клетки (в 2-3 раза больше лейкоцитов) ретикулогистио-цитарного происхождения. Цитоплазма их содержит обильные включения. Они могут быть

бесцветными (миелиновые зерна), черными от частиц угля (пылевые клетки) (рис. 29) или желтокоричневыми от гемосидерина (клетки сердечных пороков, сидерофаги). Альвеолярные макрофаги в небольшом количестве имеются в любой мокроте, содержание их увеличивается при воспалительных заболеваниях. Клетки сердечных пороков (рис. 30) встречаются при попадании эритроцитов в полость альвеол (при застое в малом круге кровообращения, особенно при митральном стенозе, инфаркте легкого, а также при крупозной пневмонии и гемосидерозе). Для более достоверно-

го их определения ставят так называемую реакцию на берлинскую лазурь: немного мокроты помещают на предметное стекло, наливают 1-2 капли 5% раствора желтой кровяной соли, через 2-3 мин - столько же 2% раствора хлористоводородной кислоты, перемешивают и накрывают покровным стеклом. Через несколько минут зерна гемосидерина оказываются окрашенными в синий цвет.

Клетки злокачественных опухолей нередко попадают в мокроту, особенно если опухоль растет эндобронхиально или распадается. В нативном препарате эти клетки выделяются своим атипизмом: они большей частью крупные, имеют уродливую форму, крупное ядро, а иногда несколько ядер. При хронических воспалительных процессах в бронхах выстилающий их эпителий метаплазируя, приобретает атипичные черты и может напоминать клетки опухоли. Поэтому определить клетки как опухолевые можно только в случае нахождения комплексов атипичных и притом полиморфных клеток, особенно если они располагаются на волокнистой основе или вместе с эластическими волокнами.

Эластические волокна (рис. 31) появляются в мокроте при распаде легочной ткани: туберкулезе, раке, абсцессе. Эластические волокна имеют вид тонких двухконтурных волоконец одинаковой на всем протяжении толщины, дихотомически ветвящихся. Они нередко встречаются кольцевидными пучками, сохраняющими альвеолярное расположение. Так как эти волокна попадаются далеко не в каждой капле мокроты, для облегчения поисков прибегают к их концентрации. Для этой цели к нескольким миллилитрам мокроты прибавляют равное или двойное количество 10% раствора едкой щелочи и нагревают до растворения слизи. При этом растворяются все форменные элементы мокроты, кроме эластических волокон. После охлаждения жидкость нтрифугируют, прибавив к ней 3-5 капель 1% спиртового раствора эозина, осадок микроскопируют. Эластические волокна сохраняют описанный выше характер и хорошо выделяются ярко-красным цветом.Актиномицеты отыскивают, выбирая из мокроты мелкие плотные желтоватые крупинки - друзы. У раздавленной под покровным стеклом в капле глицерина или щелочи друзы под микроскопом видна центральная часть, состоящая из сплетения мицелия, и окружающая ее зона лучисто расположенных колбовидных образований. При окрашивании раздавленной друзы по Граму мицелий приобретает фиолетовую, а колбочки - розовую окраску. Из других грибов, встречающихся в мокроте, наибольшее значение имеет Candida albicans, поражающий легкие при длительном лечении антибиотиками и у очень ослабленных людей. В нативном препарате находят почкующиеся дрожжеподобные клетки и ветвистый мицелий, на котором споры расположены мутовками. з кристаллов в мокроте обнаруживаются кристаллы Шарко-Лейдена: бесцветные октаэдры разной величины, напоминающие по форме стрелку компаса. Они состоят из белка, освобождающегося при распаде эозинофилов, поэтому встречаются в мокроте, содержащей много эозинофилов, причем больше их в несвежей мокроте. После легочных кровотечений, если кровь выделяется с мокротой не сразу, можно обнаружить кристаллы гематоидина - ромбические или игольчатые образования желто-бурого цвета.

Микроскопия окрашенных препаратов. Производится с целью изучения микробной флоры мокроты и некоторых ее клеток. Из них наиболее важно определение клеток злокачественных опухолей. Для этой цели мазок из найденного в нативном препарате подозрительного материала, сделанный с осторожностью, чтобы не раздавить клетки, фиксируют в метаноле или смеси Никифорова и окрашивают по Романовскому-Гимзе (или другой дифференциальной окраской). Для опулевых клеток характерны полиморфизм величины и формы, наличие отдельных очень крупных клеток, большие часто гиперхромные и наряду с ними гипохромные ядра, иногда множественные, неправильной формы с крупными ядрышками; гомогенная, иногда вакуолизированная цитоплазма в части клеток резко базофильная; нередко встречаются фигуры митоза. Наиболее убедительны комплексы полиморфных клеток указанного характера. Для распознавания эозинофильных лейкоцитов пригоден мазок, окрашенный по Романовскому-Гимзе или последовательно 1% раствором эозина (2-3 мин) и 0,2% раствором метиленового синего (V2-1 мин). Единичные эозинофилы могут встретиться в любой мокроте: в большом количестве (до 50-90% всех лейкоцитов) они обнаруживаются при бронхиальной астме, эозинофильных инфильтратах, глистных инвазиях легких и т. п.

Бактериоскопическое исследование . Для данного исследования мазки приготовляют, растирая комок мокроты между двумя предметными стеклами. Высохший мазок фиксируют, медленно проводя его 3 раза через пламя газовой горелки, и окрашивают: для поисков микобактерий туберкулеза по Цилю-Нильсену, в других случаях - по Граму.краска по Цилю-Нильсену. На фиксированный мазок накладывают равный по площади кусочек фильтровальной бумаги, наливают на нее карболовый фуксин Циля и нагревают на нежарком пламени до появления паров. Затем бумажку снимают, препарат промывают водой и опускают для обесцвечивания в 3% раствор хлористоводородной кислоты в 9° спирте (или в 5-10% раствор серной кислоты), снова хорошо промывают водой, докрашивают в течение 1/2-1 мин 0,5% раствором метиленового синего и промывают водой. Кислотоупорные бактерии прочно удерживают принятую окраску: они не обесцвечиваются и остаются красными на синем фоне остальных элементов мокроты, обесцветившихся в кислоте и приобретающих дополнительную окраску.

В случаях, когда при бактериоскопии из-за малого количества микобактерий туберкулеза (рис. 32) обнаружить их не удается, прибегают к ряду дополнительных исследований. Так, при люминесцентной микроскопии обычным образом сделанный и фиксированный мазок окрашивают люминесцирующим красителем (родамин, акридин оранжевый), а затем другим красителем (кислый фуксин, метиленовый синий), гасящим свечение фона. В ультрафиолетовом свете люминесцентного микроскопа микобактерий светятся настолько ярко, что их можно заметить, пользуясь сухим объективом (40 х), охватывающим значительно большее поле зрения, чем иммерсионный. Методы

накопления позволяют сконцентрировать микобактерий туберкулеза. Наиболее широко применяется метод флотации, при котором гомогенизированную щелочью мокроту взбалтывают с толуолом, ксилолом или бензином, мельчайшие капли которых, всплывая, захватывают микобактерий. Отстоявшийся сливкообразный слой углеводорода отсасывают пипеткой и наносят на подогретое стекло каплю за каплей на одно и то же место. После подсыхания препарат фиксируют и окрашивают по Цилю-Нильсену. Другим методом накопления является электрофорез: при прохождении постоянного тока через разжиженную мокроту микобактерий туберкулеза устремляются к катоду, с поверхности которого делают мазки и окрашивают по Цилю-Нильсену. Оаска по Граму. На фиксированный на огне мазок кладут полоску фильтровальной бумаги, на которую налива-

ют карболовый раствор генцианового фиолетового. Через 1-2 мин бумажку сбрасывают, заливают мазок на 2 мин

раствором Люголя, затем сливают его и опускают препарат в 96° спирт на 7г-1 мин (пока не перестанет отходить краситель), промывают водой и докрашивают в течение 1 мин разведенным в 10 раз раствором карболового фуксина.

В окрашенном по Граму препарате можно дифференцировать ряд микроорганизмов: грамположительные капсульный пневмококк, стрептококк и стафилококк, грамотрицательные клебсиеллу (капсульная диплобацилла Фридленде-ра), мелкую палочку Пфейффера и др. (рис. 33). Все эти ми-

кроорганизмы в небольшом количестве имеются в дыхательных путях здоровых людей и только при неблагоприятных для организма условиях могут стать патогенными и вызвать пневмонию, абсцесс легкого, бронхит и т. п. В этих случаях они обнаруживаются в мокроте в большом количестве.

Бактериологическое исследование (посев мокроты на питательные среды). Используют в том случае, когда бактериоскопическое исследование не обнаруживает предполагаемого возбудителя. Бактериологическое исследование позволяет идентифицировать вид микробов, определять их вирулентность и лекарственную устойчивость, что необходимо для правильного подбора медикаментозных средств. Наконец, в некоторых случаях, когда более простыми способами возбудителя обнаружить не удается, мокротой, полученной от больного, заражают экспериментальных животных.

Исследование плевральной жидкости . В полости плевры здорового человека имеется незначительное количество жидкости, близкой по составу к лимфе, облегчающей скольжение плевральных листков при дыхании. Объем плевральной жидкости может увеличиваться (выпот) как при нарушении крово- и лимфообращения в легких - невоспалительный выпот, или транссудат, так и при воспалительных изменениях плевры - экссудат. Экссудат может быть вызван клинически первичной инфекцией плевры или являться сопутствующим при некоторых общих инфекциях и при ряде заболеваний легких и средостения (ревматизм, инфаркт, рак и туберкулез легких, лимфогранулематоз и т. п.). Исследование плевральной жидкости проводят для следующих целей: 1)

определения ее характера (транссудат, экссудат, гной, кровь, хилезная жидкость); 2) изучения клеточного состава жидкости, дающего сведения о характере патологического процесса, а иногда (при нахождении опухолевых клеток) - и о диагнозе; 3) выявления в случае инфекционного характера поражения возбудителя и определения его чувствительности к антибиотикам. Анализ

плевральной жидкости складывается из макроскопического, физико-химического, микроскопического и в ряде случаев микробиологического и биологического исследований.

Макроскопическое исследование. Внешний вид плевральной жидкости зависит в основном от ее клеточного и частично от химического состава. Различают выпоты серозный, серозно-фибринозный, фибринозный, серозно-гнойный, гнойный, гнилостный, геморрагический, хилезный и хилезоподобный.

Транссудат и серозный экссудат прозрачны или слегка опалесцируют. Помутнение экссудата бывает обусловлено обилием лейкоцитов (серозно-гнойный и гнойный экссудат), эритроцитов (геморрагический экссудат), капелек жира (хилезный экссудат), клеточного детрита (хилезоподобный экссудат). Характер клеток распознается при микроскопии. Хилезный характер экссудата определяют пробой с эфиром - при его добавлении мутность исчезает. Такой выпот бывает обу-

словлен застоем лимфы либо разрушением грудного лимфатического протока опухолью или травмой. Хилезоподобный вид экссудат принимает при жировом перерождении клеток, содержащихся в обильном количестве. В обоих случаях жир окрашивается Суданом III.Цвет транссудата бледно-желтый, серозного экссудата - от бледно- до золотисто-желтого, при желтухе - до насыщенно-желтого. Гнойный экссудат серовато-белесоватый, зеленовато-желтый, при примеси крови - с красным оттенком или, чаще, коричневато-серый; такой же цвет у гнилостного экссудата. Геморрагический выпот в зависимости от количества крови и срока ее нахождения в плевре может иметь различные оттенки: от розового до темно-красного и бурого. При гемолизе выпот приобретает лаковый вид. Хилезный экссудат похож на разбавленное молоко.

Консттенция транссудата и экссудата, как правило, в большинстве случаев жидкая. Гнойный экссудат бывает густым, сливкообразным, иногда с трудом проходит через пункционную иглу. Гной из старых осумкованных эмпием может быть пюреобразным, крошковатым, с хлопьями фибрина.

Запахом (неприятным, зловонным) обладает только гнилостный экссудат, наблюдаемый при гангрене легкого. Этот запах обусловлен распадом белка, производимым ферментами анаэробной флоры.